Scroll to Top

Volume : IV, Issue : X, November - 2014

BOUNDS ON DOMINATION IN ZERO DIVISOR GRAPH

Suhas P. Gade, None

By : Laxmi Book Publication

Abstract :

Let R be a commutative ring and let be the zero divisor graph of R. The zero divisor graph of a ring is the graph(simple) whose vertex set is the set of non zero zero divisor, and an edge is drawn between two distict vertices if their product is zero. For a graph , a set S is a dominating set of , if every vertex in is adjacent to some vertex in S. The minimum Cardinality of vertex in such a set is called the domination number of and is denoted by . In this paper many bounds on were obtained in terms of the elements of . Also its relations with other domination parameters were obtained.

Keywords :


    Article :


    Cite This Article :

    Suhas P. Gade, None(2014). BOUNDS ON DOMINATION IN ZERO DIVISOR GRAPH. Indian Streams Research Journal, Vol. IV, Issue. X, http://isrj.org/UploadedData/8197.pdf

    References :

    1. I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
    2. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
    3. T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
    4. I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
    5. V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
    6. I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
    7. I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
    8. V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
    9. V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
    10. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
    11. T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
    12. I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
    13. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
    14. T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
    15. V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
    16. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
    17. T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
    18. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
    19. T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
    20. I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
    21. V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
    22. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
    23. T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
    24. V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.

    Article Post Production

      No data exists for the row/column.
    Creative Commons License
    Indian Streams Research Journal by Laxmi Book Publication is licensed under a Creative Commons Attribution 4.0 International License.
    Based on a work at http://oldisrj.lbp.world/Default.aspx.
    Permissions beyond the scope of this license may be available at http://oldisrj.lbp.world/Default.aspx
    Copyright � 2014 Indian Streams Research Journal. All rights reserved
    Looking for information? Browse our FAQs, tour our sitemap, or contact ISRJ
    Read our Privacy Policy Statement and Plagairism Policy. Use of this site signifies your agreement to the Terms of Use