Volume : IV, Issue : X, November - 2014 BOUNDS ON DOMINATION IN ZERO DIVISOR GRAPHSuhas P. Gade, None By : Laxmi Book Publication Abstract : Let R be a commutative ring and let be the zero divisor graph of R. The zero divisor graph of a ring is the graph(simple) whose vertex set is the set of non zero zero divisor, and an edge is drawn between two distict vertices if their product is zero. For a graph , a set S is a dominating set of , if every vertex in is adjacent to some vertex in S. The minimum Cardinality of vertex in such a set is called the domination number of and is denoted by . In this paper many bounds on were obtained in terms of the elements of . Also its relations with other domination parameters were obtained. Keywords : Article : Cite This Article : Suhas P. Gade, None(2014). BOUNDS ON DOMINATION IN ZERO DIVISOR GRAPH. Indian Streams Research Journal, Vol. IV, Issue. X, http://isrj.org/UploadedData/8197.pdf References : - I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
- D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
- T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
- V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
- I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
- I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
- V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
- V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
- D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
- T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
- D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
- T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
- D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
- T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
- T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- I. Beck, Coloring of commutative rings, J. Algebra 116(1998), 208-226.
- V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
- D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, No.2(1999), 434-447.
- T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- V. R. Kulli, Vishwa International Publications, Gulbarga-585103, India.
|
Article Post Production
No data exists for the row/column.
|