Volume : VI, Issue : II, March - 2016 POLITICAL EMPOWERMENT OF WOMENChikkanna , Mahalinga K. By : Laxmi Book Publication Abstract : Women’s empowerment is a new phrase in the vocabulary of gender literature. The phrase is used in two broad senses i.e. general and specific. In a general sense, it refers to empowering women to be self-dependent by providing them access to all the freedoms and opportunities, which they were denied in the past only because of their being ‘women’. In a specific sense, women empowerment refers to enhancing their position in the power structure of the society. The word women empowerment essentially means that the women have the power or capacity to regulate their day- to- day lives in the social, political and economic terms - a power which enables them to move from the periphery to the centre stage. Keywords : Article : Cite This Article : Chikkanna , Mahalinga K.(2016). POLITICAL EMPOWERMENT OF WOMEN. Indian Streams Research Journal, Vol. VI, Issue. II, http://isrj.org/UploadedData/7832.pdf References : - 5. Rhoades, B. E. (2001), “Some theorems on weakly contractive maps.” Nonlinear Analysis, 47 , 2683-2693.
- 6. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, icspaces, Math. Japon., 36(1991), 283-289.
- B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland,Amsterdam, 1983.
- B. Singh, S. Jain, A fixed point theorem in Menger Space through weakcompatibility, J. Math. Anal. Appl., 301(2005), 439-448.
- K. Menger, Statistical metric, Proc. Nat. Acad., 28(1942), 535-537.
- S. Sessa, On a weak commutative condition in fixed point consideration,Publ. Inst. Math., 32(1982), 146-153.
- Vetro, C., Gopal, D., and Imdad, M. (2010), “Common fixed point theorems for weak contractions in fuzzy metric
- G. Jungck, Compatible mappings and fixed points, Amer. Math. Monthly,83(1976), 261-263.
- 8. V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mapping onPM spaces, Math. Systems Theory, 6(1972), 97-100.
- 5. Rhoades, B. E. (2001), “Some theorems on weakly contractive maps.” Nonlinear Analysis, 47 , 2683-2693.
- 6. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, icspaces, Math. Japon., 36(1991), 283-289.
- 8. V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mapping onPM spaces, Math. Systems Theory, 6(1972), 97-100.
- B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland,Amsterdam, 1983.
- B. Singh, S. Jain, A fixed point theorem in Menger Space through weakcompatibility, J. Math. Anal. Appl., 301(2005), 439-448.
- K. Menger, Statistical metric, Proc. Nat. Acad., 28(1942), 535-537.
- S. Sessa, On a weak commutative condition in fixed point consideration,Publ. Inst. Math., 32(1982), 146-153.
- Vetro, C., Gopal, D., and Imdad, M. (2010), “Common fixed point theorems for weak contractions in fuzzy metric
- G. Jungck, Compatible mappings and fixed points, Amer. Math. Monthly,83(1976), 261-263.
- B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland,Amsterdam, 1983.
- B. Singh, S. Jain, A fixed point theorem in Menger Space through weakcompatibility, J. Math. Anal. Appl., 301(2005), 439-448.
- K. Menger, Statistical metric, Proc. Nat. Acad., 28(1942), 535-537.
- S. Sessa, On a weak commutative condition in fixed point consideration,Publ. Inst. Math., 32(1982), 146-153.
- Vetro, C., Gopal, D., and Imdad, M. (2010), “Common fixed point theorems for weak contractions in fuzzy metric
- G. Jungck, Compatible mappings and fixed points, Amer. Math. Monthly,83(1976), 261-263.
- 5. Rhoades, B. E. (2001), “Some theorems on weakly contractive maps.” Nonlinear Analysis, 47 , 2683-2693.
- 6. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, icspaces, Math. Japon., 36(1991), 283-289.
- 8. V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mapping onPM spaces, Math. Systems Theory, 6(1972), 97-100.
- B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland,Amsterdam, 1983.
- 5. Rhoades, B. E. (2001), “Some theorems on weakly contractive maps.” Nonlinear Analysis, 47 , 2683-2693.
- 6. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, icspaces, Math. Japon., 36(1991), 283-289.
- B. Singh, S. Jain, A fixed point theorem in Menger Space through weakcompatibility, J. Math. Anal. Appl., 301(2005), 439-448.
- K. Menger, Statistical metric, Proc. Nat. Acad., 28(1942), 535-537.
- S. Sessa, On a weak commutative condition in fixed point consideration,Publ. Inst. Math., 32(1982), 146-153.
- Vetro, C., Gopal, D., and Imdad, M. (2010), “Common fixed point theorems for weak contractions in fuzzy metric
- G. Jungck, Compatible mappings and fixed points, Amer. Math. Monthly,83(1976), 261-263.
- 8. V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mapping onPM spaces, Math. Systems Theory, 6(1972), 97-100.
- B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland,Amsterdam, 1983.
- B. Singh, S. Jain, A fixed point theorem in Menger Space through weakcompatibility, J. Math. Anal. Appl., 301(2005), 439-448.
- K. Menger, Statistical metric, Proc. Nat. Acad., 28(1942), 535-537.
- S. Sessa, On a weak commutative condition in fixed point consideration,Publ. Inst. Math., 32(1982), 146-153.
- 8. V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mapping onPM spaces, Math. Systems Theory, 6(1972), 97-100.
- Vetro, C., Gopal, D., and Imdad, M. (2010), “Common fixed point theorems for weak contractions in fuzzy metric
- G. Jungck, Compatible mappings and fixed points, Amer. Math. Monthly,83(1976), 261-263.
- 5. Rhoades, B. E. (2001), “Some theorems on weakly contractive maps.” Nonlinear Analysis, 47 , 2683-2693.
- 6. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, icspaces, Math. Japon., 36(1991), 283-289.
- 8. V. M. Sehgal, A. T. Bharucha-Reid, Fixed point of contraction mapping onPM spaces, Math. Systems Theory, 6(1972), 97-100.
- B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland,Amsterdam, 1983.
- B. Singh, S. Jain, A fixed point theorem in Menger Space through weakcompatibility, J. Math. Anal. Appl., 301(2005), 439-448.
- K. Menger, Statistical metric, Proc. Nat. Acad., 28(1942), 535-537.
- S. Sessa, On a weak commutative condition in fixed point consideration,Publ. Inst. Math., 32(1982), 146-153.
- Vetro, C., Gopal, D., and Imdad, M. (2010), “Common fixed point theorems for weak contractions in fuzzy metric
- G. Jungck, Compatible mappings and fixed points, Amer. Math. Monthly,83(1976), 261-263.
- 5. Rhoades, B. E. (2001), “Some theorems on weakly contractive maps.” Nonlinear Analysis, 47 , 2683-2693.
- 6. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, icspaces, Math. Japon., 36(1991), 283-289.
|
Article Post Production
No data exists for the row/column.
|