Scroll to Top

Volume : IV, Issue : III, April - 2014

TORQUE RIPPLE MINIMIZA TION IN SWITCHED RELUCT ANCE MOTORS USING PID FUZZYLOGIC CONTROLLER

K. Deepak, G. Nagarajan

By : Laxmi Book Publication

Abstract :

The main objective of this paper is to design a system which will have small speed ripple and also produces fast response of switch reluctance motor (SRM) for various speeds , magnetic flux and current by means of PID fuzzy logic controller . The speed of motor is get increased by means of reducing the torque value and also by means of ripple content. The SRM will haves a PI fuzzy logic controller and a derivative part. The developed novel PID-like fuzzy logic controller (FLC) maintains a constant electromagnetic torque. This study will increase performance of the motor and produce fast response.

Keywords :


Article :


Cite This Article :

K. Deepak, G. Nagarajan(2014). TORQUE RIPPLE MINIMIZA TION IN SWITCHED RELUCT ANCE MOTORS USING PID FUZZYLOGIC CONTROLLER. Indian Streams Research Journal, Vol. IV, Issue. III, http://isrj.org/UploadedData/4541.pdf

References :

  1. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  2. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  3. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  4. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  5. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  6. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  7. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  8. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  9. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  10. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  11. number of rotor
  12. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  13. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  14. motor,” IEEE Trans.
  15. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  16. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  17. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  18. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  19. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  20. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  21. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  22. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  23. motor,” IEEE Trans.
  24. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  25. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  26. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  27. motor,” IEEE Trans.
  28. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  29. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  30. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  31. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  32. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  33. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  34. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  35. number of rotor
  36. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  37. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  38. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  39. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  40. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  41. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  42. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  43. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  44. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  45. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  46. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  47. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  48. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  49. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  50. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  51. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  52. motor,” IEEE Trans.
  53. motor,” IEEE Trans.
  54. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  55. number of rotor
  56. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  57. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  58. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  59. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  60. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  61. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  62. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  63. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  64. motor,” IEEE Trans.
  65. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  66. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  67. number of rotor
  68. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  69. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  70. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  71. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  72. number of rotor
  73. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  74. motor,” IEEE Trans.
  75. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  76. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  77. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  78. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  79. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  80. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  81. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  82. number of rotor
  83. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  84. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  85. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  86. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  87. number of rotor
  88. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  89. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  90. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  91. motor,” IEEE Trans.
  92. motor,” IEEE Trans.
  93. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  94. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  95. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  96. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  97. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  98. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  99. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  100. number of rotor
  101. motor,” IEEE Trans.
  102. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  103. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  104. motor,” IEEE Trans.
  105. number of rotor
  106. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  107. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  108. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  109. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  110. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  111. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  112. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  113. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  114. motor,” IEEE Trans.
  115. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  116. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  117. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  118. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  119. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  120. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  121. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  122. motor,” IEEE Trans.
  123. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  124. motor,” IEEE Trans.
  125. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  126. motor,” IEEE Trans.
  127. motor,” IEEE Trans.
  128. number of rotor
  129. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  130. motor,” IEEE Trans.
  131. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  132. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  133. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  134. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  135. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  136. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  137. motor,” IEEE Trans.
  138. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  139. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  140. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  141. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  142. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  143. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  144. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  145. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  146. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  147. number of rotor
  148. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  149. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  150. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  151. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  152. number of rotor
  153. number of rotor
  154. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  155. number of rotor
  156. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  157. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  158. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  159. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  160. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  161. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  162. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  163. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  164. number of rotor
  165. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  166. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  167. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  168. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  169. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  170. number of rotor
  171. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  172. number of rotor
  173. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  174. number of rotor
  175. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  176. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  177. number of rotor
  178. motor,” IEEE Trans.
  179. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  180. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  181. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  182. number of rotor
  183. motor,” IEEE Trans.
  184. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  185. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  186. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  187. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  188. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  189. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  190. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  191. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  192. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  193. number of rotor
  194. number of rotor
  195. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  196. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  197. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  198. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  199. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  200. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  201. motor,” IEEE Trans.
  202. number of rotor
  203. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  204. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  205. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  206. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  207. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  208. motor,” IEEE Trans.
  209. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  210. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  211. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  212. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  213. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  214. number of rotor
  215. number of rotor
  216. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  217. motor,” IEEE Trans.
  218. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  219. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  220. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  221. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  222. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  223. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  224. number of rotor
  225. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  226. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  227. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  228. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  229. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  230. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  231. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  232. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  233. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  234. number of rotor
  235. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  236. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  237. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  238. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  239. LIN, Z.; REA Y , S.; WILLIAMS, W.; XIANGNING.Torque ripple reduction in switched reluctance motor drives using Bspline neural networks. IEEE Transactions of Industry Applications, v . 42, n. 6,p. 1445-53, 2006.
  240. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  241. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  242. number of rotor
  243. J. Corda and S. M. Jamil, “Experimental determination of equivalent circuit parameters of a tubular switched reluctance
  244. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  245. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  246. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  247. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  248. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  249. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  250. P . C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher
  251. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  252. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  253. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  254. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  255. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  256. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  257. J. G. Amoros and P . Andrada, “Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance
  258. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  259. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.
  260. MIR, S.; MALIK, E.; HUSAIN, I. T orque ripple minimization in switched reluctance motors using adaptive fuzzy control.
  261. IEEE Transactions on Industry Applications, v . 35, n. 2, p. 461-468, 1999
  262. machine with solid-steel magnetic core,” IEEE Trans. Ind. Electron., vol. 57, no. 1,pp. 304–310, Jan. 2010.
  263. poles than stator poles: Concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649–659, Feb. 2010.
  264. Ind. Electron., vol. 57, no. 1, pp. 311–319, Jan. 2010.

Article Post Production

    No data exists for the row/column.
Creative Commons License
Indian Streams Research Journal by Laxmi Book Publication is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://oldisrj.lbp.world/Default.aspx.
Permissions beyond the scope of this license may be available at http://oldisrj.lbp.world/Default.aspx
Copyright � 2014 Indian Streams Research Journal. All rights reserved
Looking for information? Browse our FAQs, tour our sitemap, or contact ISRJ
Read our Privacy Policy Statement and Plagairism Policy. Use of this site signifies your agreement to the Terms of Use