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ABSTRACT:  

In order to mitigate the threat posed by quantum computing to cryptographic security, this work presents a hardware 

accelerator to enable multiple Post-Quantum Cryptosystem (PQC) approaches. Even though PQCs are more secure, they also 

come with high computational requirements, which are problematic for lightweight devices in particular.  It is inefficient that 

previous hardware accelerators are usually scheme-specific given that the National Institute of Standards and Technology (NIST) 

has several finalists. By concentrating on the common functions of these schemes, our method enables the simultaneous 

acceleration of several candidate PQCs by a single design. By distributing resources based on the findings of performance 

profiling, this is further improved. In comparison to the present state-of-the-art multi-scheme accelerator, our scalable and 

compact hardware accelerator supports four of the NIST PQC finalists, delivering an area efficiency of up to 81.85% while 

supporting twice as many 
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1. INTRODUCTION 
Cryptographic algorithms that are essential for system identification and authentication are the key exchange algorithm 
(KEA) and the digital signature method (DSA). Such classical cryptosystems have been implemented in a range of HW 
platforms, from low-end embedded/mobile devices [3] to high-end platforms [4], and have been employed as powerful 
security measures in a variety of domains, including the Internet of Things (IoT) [1] and autonomous industrial systems [2]. 
But the emergence of quantum computing, a well-known technology that has been propelling tremendous advancement, has 
greatly endangered classical cryptosystems. It was shown that they were susceptible to assaults from quantum computing 
systems [5], which made the development of novel cryptosystems with quantum-resistant architecture necessary.  
NIST started the post-quantum cryptography (PQC) standardisation process in order to meet this demand. 

A naive approach to supporting all four PQC finalist schemes would be to integrate four independent designs, 
each dedicated to one scheme. However, this would require excessive hardware area, limiting applicability across various 
platforms needed for wide- ranging fields. Our work proposes a design methodology enabling efficient implementation of all 
four schemes within hardware area constraints. This methodology is built on a com- prehensive analysis of the four PQC 
finalist schemes, aiming to create a flexible and efficient hardware design that adapts to various area constraints. We begin 
with performance profil- ing to identify computational hotspots—parts of each scheme where the most computational 

resources are used—and common operations across the schemes. This analysis reveals three key challenges: the diverse 
nature of polynomial operations, varying proportions of Keccak usage, and distinct high-level operation sequences among 
the schemes. 

To address these challenges, our hardware design incorporates three main components: a scalable Keccak 
Acceleration Module (KAM), a versatile Joint Polynomial Arithmetic Unit (JPAU), and an efficient control unit. The KAM 

offers three variants to balance area and performance requirements, while the JPAU serves as a generic arithmetic unit 
capable of handling various polynomial operations common to all schemes. To manage the complexity of control flow, we 
implement a Unified Polynomial Control Unit (UPCU) separate from the main control unit, efficiently handling 
polynomial operations for all schemes. This modular and scalable approach allows for efficient resource utilization 
and performance optimization, achieving an area efficiency of up to 81.85% compared to the current state-of- the-art multi-
scheme accelerator in [6], while supporting all four schemes instead of just two. Our evaluation shows an average 
throughput improvement ranging from 0.97 to 35.97 across the four schemes and three main operations, demonstrating 
the robustness and efficiency of our comprehensive design. 

The remainder of this paper is organized as follows: Section 2 provides background information on post-
quantum cryptography and detailed explanations of the four finalist schemes:  Dilithium, Kyber, Falcon, and SPHINCS+.  

Section 3 discusses related works and outlines our motivation. In Section 4, we present our design methodology, 



 

includ- ing performance profiling and the proposed design architecture. Section 5 details the implementation of our 
design, while Section 6 provides a comprehensive evaluation of its performance. Finally, we conclude our work in 
Section 8, summarizing our contribu- tions and discussing potential future directions in the field of hardware 
acceleration for post-quantum cryptography. 

2. Background 

2.1. Post-Quantum Cryptography 

Post-quantum cryptography (PQC) refers to cryptosystems that are considered secure against cryptanalytic attacks 

by quantum computers. Since 2016, NIST has been pursuing a PQC standardization program to select suitable schemes for 
key establishment and digital signature algorithms (KEAs and DSAs). Figure 1 depicts the general process of KEAs 
and DSAs. The KEA consists of three principal stages: key generation, encapsulation, and decapsulation. During the 
key generation stage, the receiver generates a pair of keys (public and secret) using Keygen() and broadcasts the public 

key. The sender, who wishes to send a message to the receiver, uses the public key to encapsulate the message using 
Encaps(), which the receiver decapsulates with the secret key using Decaps(). The DSA is composed of three stages: key 

generation, signature generation, and signature verification. The sender generates a pair of public and secret keys using 
Keygen(). With their private key, he generates a signature using Sign(), which the receiver can verify with the sender’s 
public key using Verify(). The signature generation continues until a valid signature is produced. For a signature to be 

valid, it should satisfy a set of constraints to ensure that it does not convey similarity with the message.  

When performing modular multiplication, reduction should follow the multiplicaton. In this case, the upper 48 
bits of the output port are used, with these values stored in a temporary register outside and fed back to the JPAU for 
reduction. This design ensures accurate and efficient reduction operations, preventing overflow and maintaining 

consis- tency. Comparison operations can be performed by subtracting two data values, useful for condition checks such as 
rejection sampling or signature validation. The comparison result is outputted through a separated port. 
Because each scheme uses different q values and coefficients for NTT, a Twiddle factor ROM is also attached to JPAU. This 
allows for flexible and accurate handling of various polynomial transformations needed for different algorithms. Since 
Kyber uses 12-bit q value and Dilithium uses the largest q value of 23 bits, we followed the approach of [6], which 
extends the ALU’s datapath to 24 bits and computes four coefficients instead of two when using the Kyber scheme. This 
significantly increases throughput and utilization for Kyber, optimizing the hardware for its specific requirements. 

Each JPAU can perform coefficient-wise operations on two coefficients simultaneously, with each port receiving two 
coefficients from two different polynomials. Adding more JPAUs can further accelerate polynomial operations, 
enhancing overall computational efficiency.  The JPAU is fully pipelined, maximizing throughput and minimizing 
latency by ensuring that multiple stages of computation can be processed concurrently without waiting for previous 
stages to complete. This pipelining is crucial for maintaining high performance across the supported cryptographic 
schemes. 
 

Control Unit 

The control unit is responsible for sending commands to JPAU and Keccak modules, as well as managing 

memory and MUX addresses. It is implemented as a large FSM with states for each scheme. Building a separate FSM for 
each scheme can result in a significant area overhead, due to the need to construct separate states for each of the four 
schemes. This can lead to a large state register and also delays in control signal paths. 

To overcome this problem, we designed a Unified Polynomial Control Unit (UPCU) separate from main control 

unit. Figure 7 shows the diagram for main control unit and UPCU. The main control unit handles the high-level control 
flow for each scheme, includ- ing initializing operations and managing the overall sequence of tasks. For instance, in the 
Dilithium_sign operation, the control unit starts by initializing and performing the SHAKE256 operation, then moves to 
Keccak operations and matrix expansion. Similarly, for Falcon_sign, it handles random sampling and then proceeds to 

polynomial multiplication. 
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Figure 7. Diagram of control unit with UPCU. 
 

 

When a JPAU operation is needed, instead of main control unit sending all JPAU opcodes and MUX control 

signals, it sends a predefined polynomial function code to the UPCU. The UPCU then takes the function code 
along with information such as the scheme and security level and starts sending the appropriate JPAU opcodes 
and SRAM memory addresses. The UPCU adjusts parameters such as N for each scheme and security level, 
eliminating the need to create separate control sequence for each scheme. This segregation of detailed polynomial 
control to the UPC minimizes the FSM complexity in the main control unit. This design ensures that the control 
logic is streamlined and efficient, capable of handling various polynomial operations without excessive state 
overhead. The detailed operation of the UPCU can be summarized as follows: 

Sample_polynomial. The UPCU initiates and manages the polynomial sampling process. This includes setting 

up necessary registers and handling data flow for efficient sampling. Polynomial_multiplication. The UPCU 

controls the sequence of multiplication and accu- 

mulation operations, coordinating data flow and setting up operands for the computation. 

NTT_INTT. The UPCU manages the NTT and INTT operations, controlling the butterfly units and Montgomery 

reduction units. It ensures efficient operations by adjusting control signals and managing data flow through 
various stages, utilizing the Twiddle factor ROM for different schemes. 

By implementing these processes within the UPCU separately, the complexity of the overall FSM is 

significantly reduced, leading to higher area efficiency. This approach allows the control unit to handle the 
operations of all four PQC schemes without incurring a large area overhead, thus enhancing the overall 
performance and efficiency of the hardware design. 

5. Implementation 

We synthesized our design using Design Compiler N-2017.09-SP2 [27] with 15 nm Opencell library [28]. We 

used kGE as a metric to ensure a fair comparison across different silicon processes, as it normalizes the differences 
in technology nodes. This standardization allowed us to compare designs more effectively, regardless of the specific 
fabrication technology used. 

Our target kGE (kilo Gate Equivalent) was set to 600 kGE, which represents the sum of kGE values from 
various reported works, as there is no single reference implementa- tion supporting all four PQC finalist 

schemes. This target was determined by combining the most efficient individual implementations for each 
scheme to achieve the minimum possible kGE sum. Specifically, we considered Gupta et al. [19]’s 157 kGE for 
Dilithium, Bisheh-Nisar et al. [23]’s 93 kGE for Kyber, Lee et al. [18]’s 98.729 kGE for Falcon verifica- tion and 
Soni et al. [29]’s 181.120 kGE for Falcon-1024 signing, and Wagner et al. [20]’s 84 kGE for SPHINCS+. Adding these 
values results in a total of 613.849 kGE. However, we conservatively set our target to 600 kGE to provide a more 
challenging and aggressive goal, ensuring a more efficient and streamlined design. It is worth noting that no 
implementation for Falcon’s key generation was available, so this function’s kGE was not included in our target 
kGE. Additionally, while Aikata et al. [6] implemented both Dilithium and Kyber, their reported 747 kGE was 
deemed too high. Thus, we opted for the combination of separate implementations by Gupta et al. [19] for 

Dilithium and Bisheh-Nisar et al. [23] for Kyber, as this resulted in a lower total kGE target.  This approach 
allowed us to set a realistic and competitive target for our unified implementation of all four PQC finalist 
schemes. 

We first built a small baseline design, Ours_Baseline, with 4 JPAU and KAM-Small variant, and extended our 

design by changing KAM-Small to KAM-Large to build Ours_S variant. Our first priority in scaling up was the JPAU 
cluster, which generally affects each scheme’s performance. After scaling up the JPAU by 4 to 8 , we built the 
Ours_M variant; we then checked whether we had margin left. If we had spare resources, we could allocate more to 
use faster KAM modules. By changing to the KAM-FP, we built the Ours_L 



 

 

variant, which resulted in 611.389 kGE, which satisfied our target kGE. Table 6 shows synthesis results of our 

proposed design compared with other designs. 

 
Table 6. Synthesis results compared with other works. 

 

 
Technology Clock Frequency 

Area 
(mm2) 

kGE 
Target Target 
kGE Scheme 

Ours_Baseline 15nm 1000MHz 0.056 284.939 - 
Dilithium, Kyber, 
SPHINCS+, Falcon(Peregrine) 

Ours_S 15 nm 1000 MHz 0.062 315.743 300 
Dilithium, Kyber, 
SPHINCS+, Falcon(Peregrine) 

Ours_M 15 nm 1000 MHz 0.115 584.624 613.849 
Dilithium, Kyber, 
SPHINCS+, Falcon(Peregrine) 

Ours_L 15 nm 1000 MHz 0.120 611.389 613.849 
Dilithium, Kyber, 
SPHINCS+, Falcon(Peregrine) 

Gupta et al. [19] 65 nm 1176 MHz 0.227 157.000 - Dilithium 

Aikata et al. [14] 65 nm 400 MHz 0.317 220.000 - Dilithium, Saber 

Aikata et al. [6] 28 nm 1000 MHz 0.263 747.000 - Dilithium, Kyber 

Wagner et al. [20] 120 nm 250 & 500 MHz 0.560 84.000 - SPHINCS+ 

Wagner et al. [20] extended 120 nm 250 & 500MHz 0.476 98.800 - SPHINCS+ 

Lee et al. [18] 28 nm 300 MHz 0.038 98.729 - Falcon(Verification) (1) 

Soni et al. [29] 512 65 nm 122 MHz 0.387 184.300 - Falcon(Signing) (2) 

Soni et al. [29] 1024 65 nm 173 MHz 0.380 181.120 - Falcon(Signing) (2) 

Bisheh-Nisar et al. [23] 65 nm 200 MHz N/A 93 - Kyber 

(1) Implemented verification algorithm in Falcon. (2) Implemented signing algorithm in Falcon. 

 
6. Evaluation 

We compared the performance of our design variants presented in Section 5, namely 

Ours_S, Ours_M, and Ours_L with prior works. 
To compare with other works, we compared our design with FoM (figure-of-merit) defined in [30] as shown 

below: 

FoM = Throughput/Area = Throughput/kGE 

This factor can show the area efficiency of the design. We also used kGE count instead of area for a fair 

comparison of accelerators with other technologies. 
Parameters used for evaluation of each PQC scheme are listed in Tables 2 and 4. In cases where no 

prior HW implementation exists for certain operations (e.g., key generation for Falcon and SPHINCS+), we 
used the performance of  CPU  implementations  with AVX extensions as a baseline for comparison. These 
CPU cycle counts, reported in the NIST reference submissions, are converted to throughput numbers to 
provide a point of reference. For ease of comparison and representations, we present the performance 
results for Dilithium and Kyber in a single subsection, as they were both implemented in the work by 
Aikata et al. [6]. The results for Falcon and SPHINCS+ are discussed in separate subsections due to their 

unique implementation characteristics and the lack of comprehensive HW implementations for all operations. 
This approach allows us to provide a comprehensive comparison across all schemes and operations, even in 
cases where direct hardware implementation comparisons are not available. It also enables us to highlight the 
advantages of our unified design across different PQC algorithms. 
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6.1. Dilithium and Kyber 

In Dilithium and Kyber, we compared our design with current state-of-the-art ASIC ac- celerators that 

support more than two different parameters, namely Aikata et al. [14], Aikata et al. [6], and the state-of-art 
Dilithium ASIC accelerator, Gupta et al. [19]. Table 7 shows the normalized throughput of our variants on 
Dilithium and Kyber compared to other accelerators. The throughput is calculated in the same manner as 
benchmarks in the NIST submission package, which performs Keygen, Sign/Encapsulate, and 
Verify/Decapsulate on each security parameter. 

 
Table 7. Relative throughput and FoM on Dilithium and Kyber. 

 

Gupta et al. [19] Aikata et al. [14] Akata et al. [6]  Ours_S Ours_M Ours_L 
Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt.   FoM   Thrpt.   FoM   Thrpt.   FoM 

 

Dilithium2 - - 0.52 0.75 1.27 0.54 1.00 1.00 1.74 0.94 2.09 1.08 
Dilithium3 - - 0.57 0.82 1.39 0.59 1.00 1.00 1.76 0.95 2.08 1.07 

Keygen  
Dilithium5 1.11 2.23 0.61 0.88 1.50 0.63 1.00 1.00 1.77 0.96 2.08 1.07 
Kyber512 - - - - 4.66 1.97 1.00 1.00 1.04 0.56 2.18 1.12 
Kyber768 - - - - 3.47 1.47 1.00 1.00 1.04 0.56 2.26 1.17 
Kyber1024 - - - - 3.08 1.30 1.00 1.00 1.04 0.56 2.31 1.19 

Dilithium2 - - 0.96 1.38 2.31 0.98 1.00 1.00 1.90 1.03 2.01 1.04 
Dilithium3 - - 1.08 1.55 2.63 1.11 1.00 1.00 1.92 1.04 2.01 1.04 

Sign 
Dilithium5 2.39 4.81 1.35 1.94 3.30 1.40 1.00 1.00 1.93 1.04 2.01 1.04 
Kyber512 - - - - 2.85 1.20 1.00 1.00 1.07 0.58 2.74 1.42 
Kyber768 - - - - 2.57 1.09 1.00 1.00 1.07 0.58 2.71 1.40 
Kyber1024 - - - - 2.34 0.99 1.00 1.00 1.07 0.58 2.68 1.39 

Dilithium2 - - 0.83 1.19 2.02 0.85 1.00 1.00 1.83 0.99 2.00 1.03 
Dilithium3 - - 0.85 1.22 2.08 0.88 1.00 1.00 1.85 1.00 2.01 1.04 

Verify 
Dilithium5 1.71 3.44 0.86 1.24 2.11 0.89 1.00 1.00 1.86 1.01 2.03 1.05 
Kyber512 - - - - 2.26 0.95 1.00 1.00 1.11 0.60 2.65 1.37 
Kyber768 - - - - 1.96 0.83 1.00 1.00 1.11 0.60 2.61 1.35 
Kyber1024 - - - - 2.10 0.89 1.00 1.00 1.11 0.60 2.57 1.33 

 
For Dilithium, due to significant loads on matrix generation, changing the Keccak module to the KAM-

FP variant can improve performance by up to 8%. Compared with Aikata et al. [14], who accelerated both 

Dilithium and Saber schemes, our Ours_M and Ours_L variants achieved a 3.11 and 3.69
 speedup on Keygen, a 1.73 and 1.81 speedup on Sign, and a 2.18 and 2.38
 speedup on Verify, on average, with 2.65 and 
2.77 larger kGE counts, and 1.44 and 1.07 larger FoM on average, respectively. Ours_S variant also achieved a 
speedup of 1.76 and 1.17 average on Keygen and Verify, while having 0.87      lower throughput on Sign, 1.43      
larger kGE counts, and 0.76      lower FoM on average. 

Comparing to Aikata et al. [6], the current state-of-the-art implementation for accel- erating both Dilithium 
and Kyber schemes, our Ours_M and Ours_L variants achieved an average throughput increase of 1.51 and 

1.27 in Keygen, respectively. In Sign, our variants had a slightly lower throughput of 0.75 and 0.71 , and, in Verify, 
the throughput was 0.89 and 0.97 lower, on average, compared to Aikata et al. [6]. However, Ours_M 
and Ours_L variants had significantly lower kGE counts, which were 0.27 and 22 lower than those of 
Aikata et al. [6], which resulted in 2.21  and 1.65 higher FoM averaged on Dilithium. 
Ours_S variant had a lower throughput of 0.72    , 0.37    , and 0.48 average on Keygen, Sign, and Verify, 
respectively, while having 2.63 smaller kGE counts with 1.17 larger FoM. 

Parameter 
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For Kyber, each JPAU in our design can perform operations on four coefficients simultaneously, 

significantly reducing the time spent using the JPAU and increasing the proportion of time dedicated to the 
KAM. Replacing the KAM from KAM-Large to KAM-FP when transitioning from Ours_M to Ours_L variant 
significantly increased the throughput in Kyber. Ours_S and {Ours_M, Ours_L} variants showed an average of 
0.72 , 0.29 , and 
0.62 lower throughput in Keygen. In Encapsulate, the Ours_S and {Ours_M, Ours_L} variants showed 

differences of 0.38 ,0.42 , and 1.05 , and, on Decapsulate, 0.47 ,0.53  , and 1.24 , respectively, compared to 
Aikata et al. [6]. This is because our design focused on breaking down each function to maximize shared 
functions, whereas Aikata et al. [6] focused on accelerating Kyber by consuming as many hardware resources 
as possible. 

6.2. Falcon 

Table 8 shows our speedup factor on Falcon [12] compared with other Falcon accelera- tors implemented on 

ASIC. Since it is difficult to find works that have implemented the full scheme in ASIC, we compared each 
functionality (namely Keygen, Sign, and Verify) with existing accelerators including SW implementation on CPU 
with AVX extensions reported in [9]. Our accelerator achieved a speedup of 8.06   , 14.76   , and 14.76    on 
Keygen, 4.03   , 
6.49  , and 6.49   on Sign, and 7.87   , 15.66   , and 15.76   on Verification compared to CPU with AVX 
extensions Ours_S and {Ours_M, Ours_L} variants, respectively.  Since the Keccak operation accounts for 
about 0.1% of total Falcon operations, using KAM-FP almost does not affect the overall performance. Our 

accelerator outperformed prior works implemented in ASIC in all three variants with more than 100× 
speedups and more than 
50× FoM. 

Table 8. Relative throughput and FoM on Falcon. 
 

Parameter 
CPU(AVX)

 Lee et al. [18] Soni et al. [29] Ours_S Ours_M Ours_L 
Thrpt. Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM 

- 
- 

0.006 
0.006 

- 
- 

 

 
6.3. SPHINCS+ 

In SPHINCS+, since the current state-of-art design is on FPGA, we compared our designs with both FPGA-based 

work and existing ASIC implementations in Table 9. When attempting to obtain a FoM comparable to other works, 
direct comparisons between existing SPHINCS+ implementations become complicated due to the significant 
differences between FPGA and ASIC technologies. The metrics used to evaluate the FPGA area (such as the 
number of LUTs or FFs) do not directly translate to ASIC metrics like kGE, making it challenging to establish a 
consistent basis for comparison. We also included a comparison of CPU performance with AVX extensions as reported 
in [10] as the baseline for Keygen, since no prior work has targeted the Keygen of SPHINCS+. SPHINCS+’s 
performance is highly dependent on the throughput of KAM. Due to heavy use of SHAKE256 hash functions for 

tree hashing, utilizing KAM-Large and KAM-FP dramatically increases overall throughput. 

- - 1.00 1.000 1.82 0.983 1.82 0.940 
- - 1.00 1.000 1.84 0.992 1.84 0.948 

- - 1.00 1.000 1.60 0.863 1.60 0.826 
- - 1.00 1.000 1.62 0.874 1.62 0.836 

0.01 0.015 1.00 1.000 1.98 1.072 2.00 1.034 
0.01 0.015 1.00 1.000 1.99 1.076 2.00 1.033 

 

Keygen 
Falcon512 0.15 - 
Falcon1024 0.11 - 

Sign 
Falcon512 0.24 0.002 
Falcon1024 0.25 0.002 

Verify 
Falcon512 0.12 - 
Falcon1024 0.13 - 

 



 

et al. [31] 

 

Table 9. Relative throughput and FoM on SPHINCS+. 
 

 

 
CPU(AVX) 

Parameter 
Thrpt.

 

Wagner 
et al. [20] 

Wagner 
et al. [20] 
extended 

Amiet 
Ours_S Ours_M Ours_L 

Thrpt.  FoM     Thrpt.  FoM     Thrpt.    FoM    Thrpt.    FoM     Thrpt.  FoM     Thrpt.  FoM 



 

× × × 

× × × 

 

Keygen    
256s-simple 0.05 - - - - - - 1.00 1.000 1.00 0.540 2.95 1.522 
256s-robust 0.04 - - - - - - 1.00 1.000 1.00 0.540 2.97 1.535 

Sign 
256s-simple 0.03 - - - - 0.82 - 1.00 1.000 1.00 0.540 2.95 1.522 

256s-robust 0.03 - - - - 0.83 - 1.00 1.000 1.00 0.540 2.97 1.535 

Verify 
256s-simple 0.01 0.03 0.104 0.04 0.135 0.06 - 1.00 1.000 1.00 0.540 2.58 1.330 

256s-robust 0.01 0.02 0.077 0.04 0.131 0.08 - 1.00 1.000 1.00 0.540 2.59 1.336 

 

Since there are many parameters in SPHINCS+, we selected the most time-consuming parameters, 256s-simple 

and 256s-robust, which are also implemented in [20]. The parameters are represented in Table 4. It should be noted 

that the robust parameter adds an extra layer of SHAKE to generate bitmasks and XOR uses the bitmask to the 
input when hashing each input. Ours_S and Ours_M variant outperform CPUs with a speedup of 33.3× in 

signing signatures. Ours_L variant, which has KAM-FP, can further accelerate up to 99×. Compared with the 
current state-of-art FPGA implementation in [31], our design has 1.2× and 3.6× higher throughput on {Ours_S, 

Ours_M} and Ours_L variants, respectively. 

6.4. Power Consumption 

Table 10 presents the power consumption of our accelerator and the energy used for each scheme compared 

with other accelerators. For a fair comparison, we used the Cadence Genus tool for power analysis, following the 
method used in Aikata et al. [6]. Power consumption represents the rate of energy use, typically measured in 
watts, and is obtained from the Genus tool. Energy consumption, on the other hand, is calculated by 
multiplying the power consumption by the execution time, providing a measure of the total energy used for a 
specific operation or set of operations. Our design achieved significantly lower power consumption compared 
to Aikata et al. [6], which used a larger design resulting in higher performance. Specifically, our design 
consumed 32.73 , 20.93 , and 20.34 less power for Ours_S, Ours_M, and Ours_L variants, respectively. For 
Dilithium, in terms of energy used for Sign/Verify combined, our variants Ours_S, Ours_M, and Ours_L 

were 
13.45 , 16.30 , and 16.81 more efficient than Aikata et al. [6]. Furthermore, For Kyber, with 

Encapsulate/Decapsulate operations combined, our variants Ours_S, Ours_M, and Ours_L were 15.11×, 

10.58×, and 24.67× more efficient than Aikata et al. [6]. 

Table 10. Power consumption compared with other accelerators. 
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For Falcon, we compared our design with Lee et al. [18], focusing on the energy used during Verify 

operations. Due to our larger design with more gate counts, our variants consumed more power: 1.89 , 2.97 , and 
3.05 for Ours_S, Ours_M, and Ours_L, re- spectively, but consumed 276 less energy when performing Verify. 
However, by utilizing modular arithmetic instead of complex double-precision floating-point operations [12], we 
achieved significantly higher energy efficiency: 206.51 , 263.17 , and 256.82 for our three variants. 

Regarding SPHINCS+, we compared our design with Amiet et al. [31], which reported power consumption for 
an FPGA accelerator platform. We chose this FPGA implementation for comparison due to the absence of other 
ASIC implementations in the literature, despite the platform difference. This state-of-the-art FPGA design served 
as our benchmark. It is important to note that, while this comparison provides valuable insights, the fundamental 
differences between ASIC and FPGA platforms should be considered when interpreting the following results. Our 
design variants Ours_S, Ours_M, and Ours_L consumed 1,087,931 , 695,955 , and 1,992,631 less energy, 
respectively, on the SPHINCS + 256s-simple param- eter. This substantial difference in power consumption can be 
largely attributed to the inherent differences between our PQC-specific ASIC implementation and the more 
general- purpose nature of FPGA platforms. Additionally, our design achieved up to 3.6 shorter processing time on 
SPHINCS+, further contributing to this significant energy efficiency gap. 

7. Discussions 

7.1. Architectural Differences against Others 

Our design is unique in that it supports all four PQC finalist schemes by breaking down each scheme’s 
operations into fundamental components and building a generalized ALU capable of handling these operations 
across different schemes. As discussed in Section 3, unlike prior works that implemented accelerators for only 
one or two schemes, we focused on creating a flexible and efficient hardware design from scratch, capable of 
performing fast computations for all four schemes. To support four different schemes, we analyzed the detailed 

operations of each algorithm and constructed a generalized ALU that can be utilized across multiple schemes. A 
similar approach can be seen in the work by [16], which implemented a coprocessor based on RISC-V architecture 
for widely used tasks such as NTT. However, our design takes a processor-like approach that is more 
customized for PQC needs, as opposed to a general CPU pipeline structure. Our design operates under a 
specialized control unit tailored for PQC, allowing it to efficiently support all four schemes with a structure 
specifically optimized for these cryptographic tasks, rather than a general-purpose architecture. This approach 
ensures that our hardware is not just a general solution, but a highly specialized one for the unique requirements 
of PQC. 

7.2. Security and Reliability 

Recent research has demonstrated side-channel and fault-injection vulnerabilities in existing cryptosystems 
[32,33], with similar vulnerabilities reported for NIST-selected PQC schemes in hardware accelerator 
implementations [31,34]. While our research primarily focused on developing an efficient hardware 
implementation without specific protection methods currently applied, we considered various security 
solutions as orthogonal work that could be integrated into our design. For instance, to counter fault injection 
attacks that create glitches by adjusting power supply voltage [35], our design architecture allows for the 
potential duplication of parts like JPAU and KAM, enabling result comparison for enhanced defense [31]. 

Masking techniques to randomize intermediate values and prevent secret leakage [36] could also be incorporated, 
although this presents challenges for lattice- based schemes due to their complex operations and rejection 
sampling. Existing works proposed efficient masking techniques for these schemes [37,38] that could be also 
applied to our design. Our flexible architecture also allows for the potential implementation of additional 
masking operations during function computations, albeit at the cost of extra clock cycles. Alternatively, trusted 
execution like TrustZone may be utilized to provide a more secure environment, but it suffers from some 
vulnerability issues, as witnessed in [39,40]. Our design was implemented as an isolated IP providing only 
fixed interfaces specific to PQC operations. While TrustZone aims to separate general execution 
environments, our approach focused exclusively on cryptographic operations with a limited set of dedicated 
interfaces. This specialization potentially results in a smaller attack surface compared 



 

 

to more general-purpose secure execution environments, which may offer additional security benefits in the 

context of post-quantum cryptographic operations. However, a comprehensive analysis of this security aspect 
is beyond the scope of this paper and remains an important area for future research. 

7.3. Limitations and Future Works 

Our design, while supporting multiple PQC schemes, has several limitations. Firstly, the absence of optimal 

performance for a single scheme is a limitation, as our accelerator primarily focuses on optimizations for multiple 
algorithms, making it challenging to achieve the best performance for any one scheme. Secondly, the 
performance ceiling of the Keccak Acceleration Module (KAM) is a concern. Due to the limited scalability of the 
Keccak algorithm, while the number of Joint Polynomial Arithmetic Units (JPAUs) can be scaled extensively, the 

KAM cannot be similarly scaled, leading to a performance bottleneck. Additionally, our design relies heavily on the 
Peregrine algorithm modifications to Falcon to avoid using double-precision floating-point operations. However, 
these modifications have not been extensively tested over a long period. Despite these limitations, experiments 
show that our design achieves throughput comparable to or sometimes better than other single- scheme 
accelerators, making it a viable option. In future works, we plan to support the original Falcon algorithm by 
integrating double-precision floating-point operations into our JPAUs and improve scalability by utilizing multiple 
KAM modules. We also aim to explore advanced optimization techniques to further enhance the performance for 
individual schemes and to develop more robust testing methodologies to ensure the reliability of our design over 
time. Furthermore, integrating adaptive algorithms to dynamically allocate resources based on workload could 

provide better performance balance across different PQC schemes. 

8. CONCLUSIONS 

The advent of quantum computing poses a significant threat to classical cryptosystems, creating a need for 

post-quantum cryptography (PQC). In response, NIST announced four schemes for standardization, each with 
its own advantages and disadvantages, such as Falcon’s short signature length. Prior works have primarily 
focused on accelerating individual schemes, making integration with other schemes challenging. We presented a 

scalable accelerator designed to support all four NIST-selected algorithms, incorporating a modified version of 
Falcon. Through function-level profiling, we identified common operations shared between schemes and 
designed each component of our accelerator accordingly. Our design achieved nearly the same throughput 
compared with state-of-the- art multi-scheme accelerators with small area overhead on Dilithium and Kyber 
and also achieved significant speedup compared other single-scheme accelerators on Falcon and SPHINCS+. 
Overall, our design provides a general speedup across all four NIST-selected schemes, demonstrating its 
effectiveness and versatility in addressing the challenges posed by quantum computing to cryptographic 
systems. 
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Abbreviations 

The following abbreviations are used in this paper. 
 

AVX Advanced Vector eXtension 

ASIC Application Specific Integrated Circuit 

ALU Arithmetic and Logical Unit 

DSE Design Space Exploration 

DSA Digital signature algorithm 

XMSS eXtended Merkle Signature Scheme 

FFT Fast Fourier Transform 

FPGA Field Programmable Gate Array 

FSM Finite-State Machine 

GE Gate Equivalent 

GPV Gentry–Peikert–Vaikuntanathan 

HW Hardware 

IoT Internet of Things 

INTT Inverse Number Theoretic Transform 

JPAU Joint Polynomial Arithmetic Unit 

KALU Kecakk ALU 

KAM Keccak Acceleration Module 

KEA Key exchange algorithm 

NIST National Insitute of Standards and Technology 

NTRU Number Theory Research Unit 

NTT Number Theroretic Transform 

PQC Post-Quantum Cryptosystem 

pk Public Key 

sk Secret Key 

SW Software 

UPCU Unified Polynomial Control Unit 

WOTS Winternitz One-Time Signature 
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