

×

×

Designing a Scalable and Area-Efficient Hardware Accelerator
Supporting Multiple PQC Schemes

Dr. Rekha

Assistant professor in Electronics Government College (Autonomous)
Kalaburagi.

ABSTRACT:

In order to mitigate the threat posed by quantum computing to cryptographic security, this work presents a hardware

accelerator to enable multiple Post-Quantum Cryptosystem (PQC) approaches. Even though PQCs are more secure, they also

come with high computational requirements, which are problematic for lightweight devices in particular. It is inefficient that

previous hardware accelerators are usually scheme-specific given that the National Institute of Standards and Technology (NIST)

has several finalists. By concentrating on the common functions of these schemes, our method enables the simultaneous

acceleration of several candidate PQCs by a single design. By distributing resources based on the findings of performance

profiling, this is further improved. In comparison to the present state-of-the-art multi-scheme accelerator, our scalable and

compact hardware accelerator supports four of the NIST PQC finalists, delivering an area efficiency of up to 81.85% while

supporting twice as many

KEYWORDS: post-quantum security; kyber–dilithium; falcon; SPHINCS+; hardware accelerator.

1. INTRODUCTION
Cryptographic algorithms that are essential for system identification and authentication are the key exchange algorithm
(KEA) and the digital signature method (DSA). Such classical cryptosystems have been implemented in a range of HW
platforms, from low-end embedded/mobile devices [3] to high-end platforms [4], and have been employed as powerful
security measures in a variety of domains, including the Internet of Things (IoT) [1] and autonomous industrial systems [2].
But the emergence of quantum computing, a well-known technology that has been propelling tremendous advancement, has
greatly endangered classical cryptosystems. It was shown that they were susceptible to assaults from quantum computing
systems [5], which made the development of novel cryptosystems with quantum-resistant architecture necessary.
NIST started the post-quantum cryptography (PQC) standardisation process in order to meet this demand.

A naive approach to supporting all four PQC finalist schemes would be to integrate four independent designs,
each dedicated to one scheme. However, this would require excessive hardware area, limiting applicability across various
platforms needed for wide- ranging fields. Our work proposes a design methodology enabling efficient implementation of all
four schemes within hardware area constraints. This methodology is built on a com- prehensive analysis of the four PQC
finalist schemes, aiming to create a flexible and efficient hardware design that adapts to various area constraints. We begin
with performance profil- ing to identify computational hotspots—parts of each scheme where the most computational

resources are used—and common operations across the schemes. This analysis reveals three key challenges: the diverse
nature of polynomial operations, varying proportions of Keccak usage, and distinct high-level operation sequences among
the schemes.

To address these challenges, our hardware design incorporates three main components: a scalable Keccak
Acceleration Module (KAM), a versatile Joint Polynomial Arithmetic Unit (JPAU), and an efficient control unit. The KAM

offers three variants to balance area and performance requirements, while the JPAU serves as a generic arithmetic unit
capable of handling various polynomial operations common to all schemes. To manage the complexity of control flow, we
implement a Unified Polynomial Control Unit (UPCU) separate from the main control unit, efficiently handling
polynomial operations for all schemes. This modular and scalable approach allows for efficient resource utilization
and performance optimization, achieving an area efficiency of up to 81.85% compared to the current state-of- the-art multi-
scheme accelerator in [6], while supporting all four schemes instead of just two. Our evaluation shows an average
throughput improvement ranging from 0.97 to 35.97 across the four schemes and three main operations, demonstrating
the robustness and efficiency of our comprehensive design.

The remainder of this paper is organized as follows: Section 2 provides background information on post-
quantum cryptography and detailed explanations of the four finalist schemes: Dilithium, Kyber, Falcon, and SPHINCS+.

Section 3 discusses related works and outlines our motivation. In Section 4, we present our design methodology,

includ- ing performance profiling and the proposed design architecture. Section 5 details the implementation of our
design, while Section 6 provides a comprehensive evaluation of its performance. Finally, we conclude our work in
Section 8, summarizing our contribu- tions and discussing potential future directions in the field of hardware
acceleration for post-quantum cryptography.

2. Background

2.1. Post-Quantum Cryptography

Post-quantum cryptography (PQC) refers to cryptosystems that are considered secure against cryptanalytic attacks

by quantum computers. Since 2016, NIST has been pursuing a PQC standardization program to select suitable schemes for
key establishment and digital signature algorithms (KEAs and DSAs). Figure 1 depicts the general process of KEAs
and DSAs. The KEA consists of three principal stages: key generation, encapsulation, and decapsulation. During the
key generation stage, the receiver generates a pair of keys (public and secret) using Keygen() and broadcasts the public

key. The sender, who wishes to send a message to the receiver, uses the public key to encapsulate the message using
Encaps(), which the receiver decapsulates with the secret key using Decaps(). The DSA is composed of three stages: key

generation, signature generation, and signature verification. The sender generates a pair of public and secret keys using
Keygen(). With their private key, he generates a signature using Sign(), which the receiver can verify with the sender’s
public key using Verify(). The signature generation continues until a valid signature is produced. For a signature to be

valid, it should satisfy a set of constraints to ensure that it does not convey similarity with the message.

When performing modular multiplication, reduction should follow the multiplicaton. In this case, the upper 48
bits of the output port are used, with these values stored in a temporary register outside and fed back to the JPAU for
reduction. This design ensures accurate and efficient reduction operations, preventing overflow and maintaining

consis- tency. Comparison operations can be performed by subtracting two data values, useful for condition checks such as
rejection sampling or signature validation. The comparison result is outputted through a separated port.
Because each scheme uses different q values and coefficients for NTT, a Twiddle factor ROM is also attached to JPAU. This
allows for flexible and accurate handling of various polynomial transformations needed for different algorithms. Since
Kyber uses 12-bit q value and Dilithium uses the largest q value of 23 bits, we followed the approach of [6], which
extends the ALU’s datapath to 24 bits and computes four coefficients instead of two when using the Kyber scheme. This
significantly increases throughput and utilization for Kyber, optimizing the hardware for its specific requirements.

Each JPAU can perform coefficient-wise operations on two coefficients simultaneously, with each port receiving two
coefficients from two different polynomials. Adding more JPAUs can further accelerate polynomial operations,
enhancing overall computational efficiency. The JPAU is fully pipelined, maximizing throughput and minimizing
latency by ensuring that multiple stages of computation can be processed concurrently without waiting for previous
stages to complete. This pipelining is crucial for maintaining high performance across the supported cryptographic
schemes.

Control Unit

The control unit is responsible for sending commands to JPAU and Keccak modules, as well as managing

memory and MUX addresses. It is implemented as a large FSM with states for each scheme. Building a separate FSM for
each scheme can result in a significant area overhead, due to the need to construct separate states for each of the four
schemes. This can lead to a large state register and also delays in control signal paths.

To overcome this problem, we designed a Unified Polynomial Control Unit (UPCU) separate from main control

unit. Figure 7 shows the diagram for main control unit and UPCU. The main control unit handles the high-level control
flow for each scheme, includ- ing initializing operations and managing the overall sequence of tasks. For instance, in the
Dilithium_sign operation, the control unit starts by initializing and performing the SHAKE256 operation, then moves to
Keccak operations and matrix expansion. Similarly, for Falcon_sign, it handles random sampling and then proceeds to

polynomial multiplication.

KAM

Op

KAM

done

poly_funciton, security, scheme UPCU_done

Comp.

result

KAM

Buffer ready

Mem. Addr,

MUX control

JPAU

count == N

Dilithium_sign

Start
SHAKE

256

matrix

expand
Init Keccak_done

complete UPC_done &

Keccak_done

..... NTT

UPC_done t0

NTT

s1,s2
UPC_done

Falcon_sign

Start
Init

complete

Random

sampling

Poly

Mult
Keccak_done

UPC_done

.....
UPC_done

NTT
UPC_done

Poly

Mult

.....

Main Control Unit

Butterfly

stage1

Unified Polynomial Control Unit

Sample_polynomial Polynomial_multiplication NTT_INTT

Start AND Start

Butterfly

stage2
..... COMP

Start AND

×

× ×

Figure 7. Diagram of control unit with UPCU.

When a JPAU operation is needed, instead of main control unit sending all JPAU opcodes and MUX control

signals, it sends a predefined polynomial function code to the UPCU. The UPCU then takes the function code
along with information such as the scheme and security level and starts sending the appropriate JPAU opcodes
and SRAM memory addresses. The UPCU adjusts parameters such as N for each scheme and security level,
eliminating the need to create separate control sequence for each scheme. This segregation of detailed polynomial
control to the UPC minimizes the FSM complexity in the main control unit. This design ensures that the control
logic is streamlined and efficient, capable of handling various polynomial operations without excessive state
overhead. The detailed operation of the UPCU can be summarized as follows:

Sample_polynomial. The UPCU initiates and manages the polynomial sampling process. This includes setting

up necessary registers and handling data flow for efficient sampling. Polynomial_multiplication. The UPCU

controls the sequence of multiplication and accu-

mulation operations, coordinating data flow and setting up operands for the computation.

NTT_INTT. The UPCU manages the NTT and INTT operations, controlling the butterfly units and Montgomery

reduction units. It ensures efficient operations by adjusting control signals and managing data flow through
various stages, utilizing the Twiddle factor ROM for different schemes.

By implementing these processes within the UPCU separately, the complexity of the overall FSM is

significantly reduced, leading to higher area efficiency. This approach allows the control unit to handle the
operations of all four PQC schemes without incurring a large area overhead, thus enhancing the overall
performance and efficiency of the hardware design.

5. Implementation

We synthesized our design using Design Compiler N-2017.09-SP2 [27] with 15 nm Opencell library [28]. We

used kGE as a metric to ensure a fair comparison across different silicon processes, as it normalizes the differences
in technology nodes. This standardization allowed us to compare designs more effectively, regardless of the specific
fabrication technology used.

Our target kGE (kilo Gate Equivalent) was set to 600 kGE, which represents the sum of kGE values from
various reported works, as there is no single reference implementa- tion supporting all four PQC finalist

schemes. This target was determined by combining the most efficient individual implementations for each
scheme to achieve the minimum possible kGE sum. Specifically, we considered Gupta et al. [19]’s 157 kGE for
Dilithium, Bisheh-Nisar et al. [23]’s 93 kGE for Kyber, Lee et al. [18]’s 98.729 kGE for Falcon verifica- tion and
Soni et al. [29]’s 181.120 kGE for Falcon-1024 signing, and Wagner et al. [20]’s 84 kGE for SPHINCS+. Adding these
values results in a total of 613.849 kGE. However, we conservatively set our target to 600 kGE to provide a more
challenging and aggressive goal, ensuring a more efficient and streamlined design. It is worth noting that no
implementation for Falcon’s key generation was available, so this function’s kGE was not included in our target
kGE. Additionally, while Aikata et al. [6] implemented both Dilithium and Kyber, their reported 747 kGE was
deemed too high. Thus, we opted for the combination of separate implementations by Gupta et al. [19] for

Dilithium and Bisheh-Nisar et al. [23] for Kyber, as this resulted in a lower total kGE target. This approach
allowed us to set a realistic and competitive target for our unified implementation of all four PQC finalist
schemes.

We first built a small baseline design, Ours_Baseline, with 4 JPAU and KAM-Small variant, and extended our

design by changing KAM-Small to KAM-Large to build Ours_S variant. Our first priority in scaling up was the JPAU
cluster, which generally affects each scheme’s performance. After scaling up the JPAU by 4 to 8 , we built the
Ours_M variant; we then checked whether we had margin left. If we had spare resources, we could allocate more to
use faster KAM modules. By changing to the KAM-FP, we built the Ours_L

variant, which resulted in 611.389 kGE, which satisfied our target kGE. Table 6 shows synthesis results of our

proposed design compared with other designs.

Table 6. Synthesis results compared with other works.

Technology Clock Frequency

Area
(mm2)

kGE
Target Target
kGE Scheme

Ours_Baseline 15nm 1000MHz 0.056 284.939 -
Dilithium, Kyber,
SPHINCS+, Falcon(Peregrine)

Ours_S 15 nm 1000 MHz 0.062 315.743 300
Dilithium, Kyber,
SPHINCS+, Falcon(Peregrine)

Ours_M 15 nm 1000 MHz 0.115 584.624 613.849
Dilithium, Kyber,
SPHINCS+, Falcon(Peregrine)

Ours_L 15 nm 1000 MHz 0.120 611.389 613.849
Dilithium, Kyber,
SPHINCS+, Falcon(Peregrine)

Gupta et al. [19] 65 nm 1176 MHz 0.227 157.000 - Dilithium

Aikata et al. [14] 65 nm 400 MHz 0.317 220.000 - Dilithium, Saber

Aikata et al. [6] 28 nm 1000 MHz 0.263 747.000 - Dilithium, Kyber

Wagner et al. [20] 120 nm 250 & 500 MHz 0.560 84.000 - SPHINCS+

Wagner et al. [20] extended 120 nm 250 & 500MHz 0.476 98.800 - SPHINCS+

Lee et al. [18] 28 nm 300 MHz 0.038 98.729 - Falcon(Verification) (1)

Soni et al. [29] 512 65 nm 122 MHz 0.387 184.300 - Falcon(Signing) (2)

Soni et al. [29] 1024 65 nm 173 MHz 0.380 181.120 - Falcon(Signing) (2)

Bisheh-Nisar et al. [23] 65 nm 200 MHz N/A 93 - Kyber

(1) Implemented verification algorithm in Falcon. (2) Implemented signing algorithm in Falcon.

6. Evaluation

We compared the performance of our design variants presented in Section 5, namely

Ours_S, Ours_M, and Ours_L with prior works.
To compare with other works, we compared our design with FoM (figure-of-merit) defined in [30] as shown

below:

FoM = Throughput/Area = Throughput/kGE

This factor can show the area efficiency of the design. We also used kGE count instead of area for a fair

comparison of accelerators with other technologies.
Parameters used for evaluation of each PQC scheme are listed in Tables 2 and 4. In cases where no

prior HW implementation exists for certain operations (e.g., key generation for Falcon and SPHINCS+), we
used the performance of CPU implementations with AVX extensions as a baseline for comparison. These
CPU cycle counts, reported in the NIST reference submissions, are converted to throughput numbers to
provide a point of reference. For ease of comparison and representations, we present the performance
results for Dilithium and Kyber in a single subsection, as they were both implemented in the work by
Aikata et al. [6]. The results for Falcon and SPHINCS+ are discussed in separate subsections due to their

unique implementation characteristics and the lack of comprehensive HW implementations for all operations.
This approach allows us to provide a comprehensive comparison across all schemes and operations, even in
cases where direct hardware implementation comparisons are not available. It also enables us to highlight the
advantages of our unified design across different PQC algorithms.

× ×

× × ×

× ×

× × ×
× × ×

× × ×

× ×

× ×

× ×

× ×

× ×

× × × ×

6.1. Dilithium and Kyber

In Dilithium and Kyber, we compared our design with current state-of-the-art ASIC ac- celerators that

support more than two different parameters, namely Aikata et al. [14], Aikata et al. [6], and the state-of-art
Dilithium ASIC accelerator, Gupta et al. [19]. Table 7 shows the normalized throughput of our variants on
Dilithium and Kyber compared to other accelerators. The throughput is calculated in the same manner as
benchmarks in the NIST submission package, which performs Keygen, Sign/Encapsulate, and
Verify/Decapsulate on each security parameter.

Table 7. Relative throughput and FoM on Dilithium and Kyber.

Gupta et al. [19] Aikata et al. [14] Akata et al. [6] Ours_S Ours_M Ours_L
Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM

Dilithium2 - - 0.52 0.75 1.27 0.54 1.00 1.00 1.74 0.94 2.09 1.08
Dilithium3 - - 0.57 0.82 1.39 0.59 1.00 1.00 1.76 0.95 2.08 1.07

Keygen
Dilithium5 1.11 2.23 0.61 0.88 1.50 0.63 1.00 1.00 1.77 0.96 2.08 1.07
Kyber512 - - - - 4.66 1.97 1.00 1.00 1.04 0.56 2.18 1.12
Kyber768 - - - - 3.47 1.47 1.00 1.00 1.04 0.56 2.26 1.17
Kyber1024 - - - - 3.08 1.30 1.00 1.00 1.04 0.56 2.31 1.19

Dilithium2 - - 0.96 1.38 2.31 0.98 1.00 1.00 1.90 1.03 2.01 1.04
Dilithium3 - - 1.08 1.55 2.63 1.11 1.00 1.00 1.92 1.04 2.01 1.04

Sign
Dilithium5 2.39 4.81 1.35 1.94 3.30 1.40 1.00 1.00 1.93 1.04 2.01 1.04
Kyber512 - - - - 2.85 1.20 1.00 1.00 1.07 0.58 2.74 1.42
Kyber768 - - - - 2.57 1.09 1.00 1.00 1.07 0.58 2.71 1.40
Kyber1024 - - - - 2.34 0.99 1.00 1.00 1.07 0.58 2.68 1.39

Dilithium2 - - 0.83 1.19 2.02 0.85 1.00 1.00 1.83 0.99 2.00 1.03
Dilithium3 - - 0.85 1.22 2.08 0.88 1.00 1.00 1.85 1.00 2.01 1.04

Verify
Dilithium5 1.71 3.44 0.86 1.24 2.11 0.89 1.00 1.00 1.86 1.01 2.03 1.05
Kyber512 - - - - 2.26 0.95 1.00 1.00 1.11 0.60 2.65 1.37
Kyber768 - - - - 1.96 0.83 1.00 1.00 1.11 0.60 2.61 1.35
Kyber1024 - - - - 2.10 0.89 1.00 1.00 1.11 0.60 2.57 1.33

For Dilithium, due to significant loads on matrix generation, changing the Keccak module to the KAM-

FP variant can improve performance by up to 8%. Compared with Aikata et al. [14], who accelerated both

Dilithium and Saber schemes, our Ours_M and Ours_L variants achieved a 3.11 and 3.69
 speedup on Keygen, a 1.73 and 1.81 speedup on Sign, and a 2.18 and 2.38
 speedup on Verify, on average, with 2.65 and
2.77 larger kGE counts, and 1.44 and 1.07 larger FoM on average, respectively. Ours_S variant also achieved a
speedup of 1.76 and 1.17 average on Keygen and Verify, while having 0.87 lower throughput on Sign, 1.43
larger kGE counts, and 0.76 lower FoM on average.

Comparing to Aikata et al. [6], the current state-of-the-art implementation for accel- erating both Dilithium
and Kyber schemes, our Ours_M and Ours_L variants achieved an average throughput increase of 1.51 and

1.27 in Keygen, respectively. In Sign, our variants had a slightly lower throughput of 0.75 and 0.71 , and, in Verify,
the throughput was 0.89 and 0.97 lower, on average, compared to Aikata et al. [6]. However, Ours_M
and Ours_L variants had significantly lower kGE counts, which were 0.27 and 22 lower than those of
Aikata et al. [6], which resulted in 2.21 and 1.65 higher FoM averaged on Dilithium.
Ours_S variant had a lower throughput of 0.72 , 0.37 , and 0.48 average on Keygen, Sign, and Verify,
respectively, while having 2.63 smaller kGE counts with 1.17 larger FoM.

Parameter

×

× × × × ×

×

× ×

× × × × ×

× × × ×

For Kyber, each JPAU in our design can perform operations on four coefficients simultaneously,

significantly reducing the time spent using the JPAU and increasing the proportion of time dedicated to the
KAM. Replacing the KAM from KAM-Large to KAM-FP when transitioning from Ours_M to Ours_L variant
significantly increased the throughput in Kyber. Ours_S and {Ours_M, Ours_L} variants showed an average of
0.72 , 0.29 , and
0.62 lower throughput in Keygen. In Encapsulate, the Ours_S and {Ours_M, Ours_L} variants showed

differences of 0.38 ,0.42 , and 1.05 , and, on Decapsulate, 0.47 ,0.53 , and 1.24 , respectively, compared to
Aikata et al. [6]. This is because our design focused on breaking down each function to maximize shared
functions, whereas Aikata et al. [6] focused on accelerating Kyber by consuming as many hardware resources
as possible.

6.2. Falcon

Table 8 shows our speedup factor on Falcon [12] compared with other Falcon accelera- tors implemented on

ASIC. Since it is difficult to find works that have implemented the full scheme in ASIC, we compared each
functionality (namely Keygen, Sign, and Verify) with existing accelerators including SW implementation on CPU
with AVX extensions reported in [9]. Our accelerator achieved a speedup of 8.06 , 14.76 , and 14.76 on
Keygen, 4.03 ,
6.49 , and 6.49 on Sign, and 7.87 , 15.66 , and 15.76 on Verification compared to CPU with AVX
extensions Ours_S and {Ours_M, Ours_L} variants, respectively. Since the Keccak operation accounts for
about 0.1% of total Falcon operations, using KAM-FP almost does not affect the overall performance. Our

accelerator outperformed prior works implemented in ASIC in all three variants with more than 100×
speedups and more than
50× FoM.

Table 8. Relative throughput and FoM on Falcon.

Parameter
CPU(AVX)

 Lee et al. [18] Soni et al. [29] Ours_S Ours_M Ours_L
Thrpt. Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM

-
-

0.006
0.006

-
-

6.3. SPHINCS+

In SPHINCS+, since the current state-of-art design is on FPGA, we compared our designs with both FPGA-based

work and existing ASIC implementations in Table 9. When attempting to obtain a FoM comparable to other works,
direct comparisons between existing SPHINCS+ implementations become complicated due to the significant
differences between FPGA and ASIC technologies. The metrics used to evaluate the FPGA area (such as the
number of LUTs or FFs) do not directly translate to ASIC metrics like kGE, making it challenging to establish a
consistent basis for comparison. We also included a comparison of CPU performance with AVX extensions as reported
in [10] as the baseline for Keygen, since no prior work has targeted the Keygen of SPHINCS+. SPHINCS+’s
performance is highly dependent on the throughput of KAM. Due to heavy use of SHAKE256 hash functions for

tree hashing, utilizing KAM-Large and KAM-FP dramatically increases overall throughput.

- - 1.00 1.000 1.82 0.983 1.82 0.940
- - 1.00 1.000 1.84 0.992 1.84 0.948

- - 1.00 1.000 1.60 0.863 1.60 0.826
- - 1.00 1.000 1.62 0.874 1.62 0.836

0.01 0.015 1.00 1.000 1.98 1.072 2.00 1.034
0.01 0.015 1.00 1.000 1.99 1.076 2.00 1.033

Keygen
Falcon512 0.15 -
Falcon1024 0.11 -

Sign
Falcon512 0.24 0.002
Falcon1024 0.25 0.002

Verify
Falcon512 0.12 -
Falcon1024 0.13 -

et al. [31]

Table 9. Relative throughput and FoM on SPHINCS+.

CPU(AVX)

Parameter
Thrpt.

Wagner
et al. [20]

Wagner
et al. [20]
extended

Amiet
Ours_S Ours_M Ours_L

Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM Thrpt. FoM

× × ×

× × ×

Keygen
256s-simple 0.05 - - - - - - 1.00 1.000 1.00 0.540 2.95 1.522
256s-robust 0.04 - - - - - - 1.00 1.000 1.00 0.540 2.97 1.535

Sign
256s-simple 0.03 - - - - 0.82 - 1.00 1.000 1.00 0.540 2.95 1.522

256s-robust 0.03 - - - - 0.83 - 1.00 1.000 1.00 0.540 2.97 1.535

Verify
256s-simple 0.01 0.03 0.104 0.04 0.135 0.06 - 1.00 1.000 1.00 0.540 2.58 1.330

256s-robust 0.01 0.02 0.077 0.04 0.131 0.08 - 1.00 1.000 1.00 0.540 2.59 1.336

Since there are many parameters in SPHINCS+, we selected the most time-consuming parameters, 256s-simple

and 256s-robust, which are also implemented in [20]. The parameters are represented in Table 4. It should be noted

that the robust parameter adds an extra layer of SHAKE to generate bitmasks and XOR uses the bitmask to the
input when hashing each input. Ours_S and Ours_M variant outperform CPUs with a speedup of 33.3× in

signing signatures. Ours_L variant, which has KAM-FP, can further accelerate up to 99×. Compared with the
current state-of-art FPGA implementation in [31], our design has 1.2× and 3.6× higher throughput on {Ours_S,

Ours_M} and Ours_L variants, respectively.

6.4. Power Consumption

Table 10 presents the power consumption of our accelerator and the energy used for each scheme compared

with other accelerators. For a fair comparison, we used the Cadence Genus tool for power analysis, following the
method used in Aikata et al. [6]. Power consumption represents the rate of energy use, typically measured in
watts, and is obtained from the Genus tool. Energy consumption, on the other hand, is calculated by
multiplying the power consumption by the execution time, providing a measure of the total energy used for a
specific operation or set of operations. Our design achieved significantly lower power consumption compared
to Aikata et al. [6], which used a larger design resulting in higher performance. Specifically, our design
consumed 32.73 , 20.93 , and 20.34 less power for Ours_S, Ours_M, and Ours_L variants, respectively. For
Dilithium, in terms of energy used for Sign/Verify combined, our variants Ours_S, Ours_M, and Ours_L

were
13.45 , 16.30 , and 16.81 more efficient than Aikata et al. [6]. Furthermore, For Kyber, with

Encapsulate/Decapsulate operations combined, our variants Ours_S, Ours_M, and Ours_L were 15.11×,

10.58×, and 24.67× more efficient than Aikata et al. [6].

Table 10. Power consumption compared with other accelerators.

 P
o
w
e
r

(
m
W
)

Dilithium3
(µ

J)

Kyber1024
(µJ
)

SPHINCS + 256s
(µJ)

FALCON1024
(µJ)

Ours_S 1
1

2.01 0.61 0.174 0.10

Ours_M 1
7
.
2

1.66 0.88 0.272 0.08

Ours_L 1
7
.
7

1.61 0.38 0.095 0.08

Aikata et al.
[6]

3
6
0

27.00 9.27 - -

Lee et al. [18] 5
.
7
9

- - - 27.60

Amiet et al.
[31]

9
7
5
0

- - 189,300 -

×

× × ×

×

× ×

×

× × ×
For Falcon, we compared our design with Lee et al. [18], focusing on the energy used during Verify

operations. Due to our larger design with more gate counts, our variants consumed more power: 1.89 , 2.97 , and
3.05 for Ours_S, Ours_M, and Ours_L, re- spectively, but consumed 276 less energy when performing Verify.
However, by utilizing modular arithmetic instead of complex double-precision floating-point operations [12], we
achieved significantly higher energy efficiency: 206.51 , 263.17 , and 256.82 for our three variants.

Regarding SPHINCS+, we compared our design with Amiet et al. [31], which reported power consumption for
an FPGA accelerator platform. We chose this FPGA implementation for comparison due to the absence of other
ASIC implementations in the literature, despite the platform difference. This state-of-the-art FPGA design served
as our benchmark. It is important to note that, while this comparison provides valuable insights, the fundamental
differences between ASIC and FPGA platforms should be considered when interpreting the following results. Our
design variants Ours_S, Ours_M, and Ours_L consumed 1,087,931 , 695,955 , and 1,992,631 less energy,
respectively, on the SPHINCS + 256s-simple param- eter. This substantial difference in power consumption can be
largely attributed to the inherent differences between our PQC-specific ASIC implementation and the more
general- purpose nature of FPGA platforms. Additionally, our design achieved up to 3.6 shorter processing time on
SPHINCS+, further contributing to this significant energy efficiency gap.

7. Discussions

7.1. Architectural Differences against Others

Our design is unique in that it supports all four PQC finalist schemes by breaking down each scheme’s
operations into fundamental components and building a generalized ALU capable of handling these operations
across different schemes. As discussed in Section 3, unlike prior works that implemented accelerators for only
one or two schemes, we focused on creating a flexible and efficient hardware design from scratch, capable of
performing fast computations for all four schemes. To support four different schemes, we analyzed the detailed

operations of each algorithm and constructed a generalized ALU that can be utilized across multiple schemes. A
similar approach can be seen in the work by [16], which implemented a coprocessor based on RISC-V architecture
for widely used tasks such as NTT. However, our design takes a processor-like approach that is more
customized for PQC needs, as opposed to a general CPU pipeline structure. Our design operates under a
specialized control unit tailored for PQC, allowing it to efficiently support all four schemes with a structure
specifically optimized for these cryptographic tasks, rather than a general-purpose architecture. This approach
ensures that our hardware is not just a general solution, but a highly specialized one for the unique requirements
of PQC.

7.2. Security and Reliability

Recent research has demonstrated side-channel and fault-injection vulnerabilities in existing cryptosystems
[32,33], with similar vulnerabilities reported for NIST-selected PQC schemes in hardware accelerator
implementations [31,34]. While our research primarily focused on developing an efficient hardware
implementation without specific protection methods currently applied, we considered various security
solutions as orthogonal work that could be integrated into our design. For instance, to counter fault injection
attacks that create glitches by adjusting power supply voltage [35], our design architecture allows for the
potential duplication of parts like JPAU and KAM, enabling result comparison for enhanced defense [31].

Masking techniques to randomize intermediate values and prevent secret leakage [36] could also be incorporated,
although this presents challenges for lattice- based schemes due to their complex operations and rejection
sampling. Existing works proposed efficient masking techniques for these schemes [37,38] that could be also
applied to our design. Our flexible architecture also allows for the potential implementation of additional
masking operations during function computations, albeit at the cost of extra clock cycles. Alternatively, trusted
execution like TrustZone may be utilized to provide a more secure environment, but it suffers from some
vulnerability issues, as witnessed in [39,40]. Our design was implemented as an isolated IP providing only
fixed interfaces specific to PQC operations. While TrustZone aims to separate general execution
environments, our approach focused exclusively on cryptographic operations with a limited set of dedicated
interfaces. This specialization potentially results in a smaller attack surface compared

to more general-purpose secure execution environments, which may offer additional security benefits in the

context of post-quantum cryptographic operations. However, a comprehensive analysis of this security aspect
is beyond the scope of this paper and remains an important area for future research.

7.3. Limitations and Future Works

Our design, while supporting multiple PQC schemes, has several limitations. Firstly, the absence of optimal

performance for a single scheme is a limitation, as our accelerator primarily focuses on optimizations for multiple
algorithms, making it challenging to achieve the best performance for any one scheme. Secondly, the
performance ceiling of the Keccak Acceleration Module (KAM) is a concern. Due to the limited scalability of the
Keccak algorithm, while the number of Joint Polynomial Arithmetic Units (JPAUs) can be scaled extensively, the

KAM cannot be similarly scaled, leading to a performance bottleneck. Additionally, our design relies heavily on the
Peregrine algorithm modifications to Falcon to avoid using double-precision floating-point operations. However,
these modifications have not been extensively tested over a long period. Despite these limitations, experiments
show that our design achieves throughput comparable to or sometimes better than other single- scheme
accelerators, making it a viable option. In future works, we plan to support the original Falcon algorithm by
integrating double-precision floating-point operations into our JPAUs and improve scalability by utilizing multiple
KAM modules. We also aim to explore advanced optimization techniques to further enhance the performance for
individual schemes and to develop more robust testing methodologies to ensure the reliability of our design over
time. Furthermore, integrating adaptive algorithms to dynamically allocate resources based on workload could

provide better performance balance across different PQC schemes.

8. CONCLUSIONS

The advent of quantum computing poses a significant threat to classical cryptosystems, creating a need for

post-quantum cryptography (PQC). In response, NIST announced four schemes for standardization, each with
its own advantages and disadvantages, such as Falcon’s short signature length. Prior works have primarily
focused on accelerating individual schemes, making integration with other schemes challenging. We presented a

scalable accelerator designed to support all four NIST-selected algorithms, incorporating a modified version of
Falcon. Through function-level profiling, we identified common operations shared between schemes and
designed each component of our accelerator accordingly. Our design achieved nearly the same throughput
compared with state-of-the- art multi-scheme accelerators with small area overhead on Dilithium and Kyber
and also achieved significant speedup compared other single-scheme accelerators on Falcon and SPHINCS+.
Overall, our design provides a general speedup across all four NIST-selected schemes, demonstrating its
effectiveness and versatility in addressing the challenges posed by quantum computing to cryptographic
systems.

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

government(MSIT) (No. RS-2022-00166529) , Korea Planning & Evaluation Institute of Industrial Technology(KEIT)

grant funded by the Korea Government(MOTIE) (No. RS-2024-00406121, Development of an Automotive Security

Vulnerability-based Threat Analysis System(R&D)) , National Research Foundation of Korea(NRF) grant funded by the

Korea govern- ment(MSIT) (RS-2023-00277326) , Institute of Information & communications Technology Planning &

Evaluation (IITP) under the artificial intelligence semiconductor support program to nurture the best talents (IITP-2023-

RS-2023-00256081) grant funded by the Korea government(MSIT) , Institute of Information & Communications Technology

Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.RS-2023-00277060, Development of open

edge AI SoC hardware and software

platform, 0.1) and Korea Evaluation Institute of Industrial Technology(KEIT) grant funded by the Korea

government(MOTIE) (No.RS-2023-00277060, Development of open edge AI SoC hardware and software platform, 0.1). ,

MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Tech- nology Research Center) support program(IITP-

2023-2020-0-01602) supervised by the IITP(Institute for Information & Communications Technology Planning &

Evaluation) , Inter-University Semicon- ductor Research Center (ISRC) , BK21 FOUR program of the Education and

Research Program for Future ICT Pioneers, Seoul National University in 2024. The EDA tool was supported by the IC

Design Education Center(IDEC), Korea.

Data Availability Statement: The data used for experimental comparisons in this study, referring to the comparison figures,

can be found in related research papers. Our hardware implementation code is protected under the proprietary rights of the

funding project’s institution and therefore cannot be made publicly available.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this paper.

AVX Advanced Vector eXtension

ASIC Application Specific Integrated Circuit

ALU Arithmetic and Logical Unit

DSE Design Space Exploration

DSA Digital signature algorithm

XMSS eXtended Merkle Signature Scheme

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

FSM Finite-State Machine

GE Gate Equivalent

GPV Gentry–Peikert–Vaikuntanathan

HW Hardware

IoT Internet of Things

INTT Inverse Number Theoretic Transform

JPAU Joint Polynomial Arithmetic Unit

KALU Kecakk ALU

KAM Keccak Acceleration Module

KEA Key exchange algorithm

NIST National Insitute of Standards and Technology

NTRU Number Theory Research Unit

NTT Number Theroretic Transform

PQC Post-Quantum Cryptosystem

pk Public Key

sk Secret Key

SW Software

UPCU Unified Polynomial Control Unit

WOTS Winternitz One-Time Signature

REFERENCES

1. Carracedo, J.M.; Milliken, M.; Chouhan, P.K.; Scotney, B.; Lin, Z.; Sajjad, A.; Shackleton, M. Cryptography for Security in IoT. In
Proceedings of the 2018 Fifth International Conference on Internet of Things: Systems, Management and Security, Valencia, Spain,

15–18 October 2018; pp. 23–30. https://doi.org/10.1109/IoTSMS.2018.8554634.

2. Katzenbeisser, S.; Polian, I.; Regazzoni, F.; Stöttinger, M. Security in Autonomous Systems. In Proceedings of the 2019 IEEE
European Test Symposium (ETS), Baden-Baden, Germany, 27–31 May 2019; pp. 1–8. https://doi.org/10.1109/ETS.2019.8791552.

3. Muzikant, P.; Willemson, J. Deploying Post-quantum Algorithms in Existing Applications and Embedded Devices. In Proceedings

of the Ubiquitous Security; Wang, G., Wang, H., Min, G., Georgalas, N., Meng, W., Eds.; Springer: Singapore, 2024; pp. 147–162.

4. Kim, D.; Choi, H.; Seo, S.C. Parallel Implementation of SPHINCS+ With GPUs. IEEE Trans. Circuits Syst. I Regul. Pap. 2024,
71, 2810–2823. https://doi.org/10.1109/TCSI.2024.3370802.

5. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303–332.

https://doi.org/10.1109/IoTSMS.2018.8554634
https://doi.org/10.1109/ETS.2019.8791552
https://doi.org/10.1109/TCSI.2024.3370802

6. Aikata, A.; Mert, A.C.; Imran, M.; Pagliarini, S.; Roy, S.S. KaLi: A Crystal for Post-Quantum Security Using Kyber and Dilithium.

IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 747–758. https://doi.org/10.1109/TCSI.2022.3219555.

7. Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-

Kyber: Algorithm Specifications and Supporting Documentation, Submission to the NIST Post-Quantum Project. 2021. Available
online: https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf (accessed on 7 August 2024).

8. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium: Algorithm

Specifications and Supporting Documentation, Submission to the NIST Post-Quantum Project. 2021. Available online: https:

//pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf (accessed on 7 August 2024).

9. Fouque, P.A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang,

Z. Falcon: Fast-Fourier Lattice-Based Compact Signatures over NTRU, Specification v1.2. 2020. Available online: https:
//falcon-sign.info/falcon.pdf (accessed on 7 August 2024).

10. Aumasson, J.P.; Bernstein, D.J.; Beullens, W.; Dobraunig, C.; Eichlseder, M.; Fluhrer, S.; Gazdag, S.L.; Hülsing, A.; Kampanakis,
P.; Kölbl, S.; et al. SPHINCS+ Specification. Submission to the NIST Post-Quantum Project. 2020. Available online:

https://sphincs.org/data/sphincs+-r3.1-specification.pdf (accessed on 7 August 2024).

11. NIST. Selected Algorithms 2022, July 2022. Available online: https://csrc.nist.gov/projects/post-quantum-cryptography/

selected-algorithms-2022 (accessed on 7 August 2024).

12. Seo, E.Y.; Kim, Y.S.; Lee, J.W.; No, J.S. Peregrine: Toward Fastest FALCON Based on GPV Framework. Cryptology ePrint Archive.

2022. Available online: https://eprint.iacr.org/2022/1495 (accessed on 7 August 2024).

13. Bernstein, D.J.; Hopwood, D.; Hülsing, A.; Lange, T.; Niederhagen, R.; Papachristodoulou, L.; Schneider, M.; Schwabe, P.; Wilcox-
O’Hearn, Z. SPHINCS: Practical Stateless Hash-Based Signatures. In Proceedings of the Advances in Cryptology–EUROCRYPT 2015;

Oswald, E.; Fischlin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 368–397.

14. Aikata, A.; Mert, A.C.; Jacquemin, D.; Das, A.; Matthews, D.; Ghosh, S.; Roy, S.S. A Unified Cryptoprocessor for Lattice-Based

Signature and Key-Exchange. IEEE Trans. Comput. 2023, 72, 1568–1580. https://doi.org/10.1109/TC.2022.3215064.

15. Basso, A.; Bermudo Mera, J.M.; D’Anvers, J.P.; Karmakar, A.; Sinha Roy, S.; Van Beirendonck, M.; Vercauteren, F. SABER: Mod-
LWR Based KEM (Round 3 Submission) SABER Submission Package for Round 3. 2017. Available online: https://www.

esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf (accessed on 7 August 2024).

16. Lee, J.; Kim, W.; Kim, J.H. A Programmable Crypto-Processor for National Institute of Standards and Technology Post-Quantum
Cryptography Standardization Based on the RISC-V Architecture. Sensors 2023, 23, 9408. https://doi.org/10.3390/s23239408.

17. Nguyen, T.H.; Kieu-Do-Nguyen, B.; Pham, C.K.; Hoang, T.T. High-Speed NTT Accelerator for CRYSTAL-Kyber and CRYSTAL-

Dilithium. IEEE Access 2024, 12, 34918–34930. https://doi.org/10.1109/ACCESS.2024.3371581.
18. Lee, Y.; Youn, J.; Nam, K.; Jung, H.H.; Cho, M.; Na, J.; Park, J.Y.; Jeon, S.; Kang, B.G.; Oh, H.; et al. An Efficient Hardware/Software

Co-Design for FALCON on Low-End Embedded Systems. IEEE Access 2024, 12, 57947–57958. https://doi.org/10.1109/ACCESS.

2024.3387489.

19. Gupta, N.; Jati, A.; Chattopadhyay, A.; Jha, G. Lightweight Hardware Accelerator for Post-Quantum Digital Signature CRYSTALS-

Dilithium. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 3234–3243. https://doi.org/10.1109/TCSI.2023.3274599.

20. Wagner, A.; Oberhansl, F.; Schink, M. To Be, or Not to Be Stateful: Post-Quantum Secure Boot using Hash-Based Signatures. In
Proceedings of the 2022 Workshop on Attacks and Solutions in Hardware Security, Los Angeles, CA, USA, 11 November 2022;
ASHES’22; pp. 85–94. https://doi.org/10.1145/3560834.3563831.

21. Mandal, S.; Roy, D.B. KiD: A Hardware Design Framework Targeting Unified NTT Multiplication for CRYSTALS-Kyber and

CRYSTALS-Dilithium on FPGA. In Proceedings of the 2024 37th International Conference on VLSI Design and 2024 23rd

International Conference on Embedded Systems (VLSID), Kolkata, India, 6–10 January 2024; pp. 455–460. https://doi.org/10.110

9/VLSID60093.2024.00082.

22. Beckwith, L.; Nguyen, D.T.; Gaj, K. Hardware Accelerators for Digital Signature Algorithms Dilithium and FALCON. IEEE Des.
Test 2023, 1. https://doi.org/10.1109/MDAT.2023.3305156.

23. Bisheh-Niasar, M.; Azarderakhsh, R.; Mozaffari-Kermani, M. A Monolithic Hardware Implementation of Kyber: Comparing

Apples to Apples in PQC Candidates. In Progress in Cryptology–LATINCRYPT 2021, Proceedings of the 7th International Conference

on Cryptology and Information Security in Latin America, Bogotá, Colombia, 6–8 October 2021; Longa, P.; Ràfols, C., Eds.; Springer:

Cham, Switzerland, 2021; pp. 108–126.
24. Intel Inc. Intel Vtune Profiler, 2023. Available online: https://www.intel.com/content/www/us/en/developer/tools/oneapi/

vtune-profiler.html (accessed on 7 August 2024).

25. Montgomery, P.L. Modular multiplication without trial division. Math. Comput. 1985, 44, 519–521.

26. Richard,T.; Chao.L; Myoung A. Algorithms for Discrete Fourier Transform and Convolution; Springer: Cham, Switzerland, 2021.

https://doi.org/10.1007/978-1-4757-2767-8.

27. SYNOPSYS Inc. Synopsys Design Cimpiler. Available online: https://www.synopsys.com/implementation-and-signoff/rtl-

synthesis-test/dc-ultra.html (accessed on 7 August 2024).
28. Martins, M.; Matos, J.M.; Ribas, R.P.; Reis, A.; Schlinker, G.; Rech, L.; Michelsen, J. Open Cell Library in 15nm FreePDK Technology.

In Proceedings of the 2015 Symposium on International Symposium on Physical Design, Monterey, CA, USA, 29 March–1 April

2015; ISPD ’15; pp. 171–178. https://doi.org/10.1145/2717764.2717783.

https://doi.org/10.1109/TCSI.2022.3219555
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://sphincs.org/data/sphincs%2B-r3.1-specification.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/1495
https://doi.org/10.1109/TC.2022.3215064
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://doi.org/10.3390/s23239408
https://doi.org/10.1109/ACCESS.2024.3371581
https://doi.org/10.1109/ACCESS.2024.3387489
https://doi.org/10.1109/ACCESS.2024.3387489
https://doi.org/10.1109/TCSI.2023.3274599
https://doi.org/10.1145/3560834.3563831
https://doi.org/10.1109/VLSID60093.2024.00082
https://doi.org/10.1109/VLSID60093.2024.00082
https://doi.org/10.1109/MDAT.2023.3305156
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://doi.org/10.1007/978-1-4757-2767-8
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://doi.org/10.1145/2717764.2717783

29. Soni, D.; Basu, K.; Nabeel, M.; Aaraj, N.; Manzano, M.; Karri, R. Hardware Architectures for Post-Quantum Digital Signature Schemes;

Springer: Cham, Switzerland, 2021. https://doi.org/10.1007/978-3-030-57682-0.
30. Alharbi, A.R.; Hazzazi, M.M.; Jamal, S.S.; Aljaedi, A.; Aljuhni, A.; Alanazi, D.J. DCryp-Unit: Crypto Hardware Accelerator Unit

Design for Elliptic Curve Point Multiplication. IEEE Access 2024, 12, 17823–17835. https://doi.org/10.1109/ACCESS.2024.33582

13.

31. Amiet, D.; Leuenberger, L.; Curiger, A.; Zbinden, P. FPGA-based SPHINCS+ Implementations: Mind the Glitch. In Proceedings

of the 2020 23rd Euromicro Conference on Digital System Design (DSD), 26–28 August 2020; pp. 229–237. https://doi.org/10.110

9/DSD51259.2020.00046.

32. Kocher, P.C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Proceedings of the Advances
in Cryptology—CRYPTO ’96; Koblitz, N., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 104–113.

33. Bogdanov, A. Improved Side-Channel Collision Attacks on AES. In Proceedings of the Selected Areas in Cryptography; Adams, C.,

Miri, A., Wiener, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 84–95.

34. Ji, Y.; Wang, R.; Ngo, K.; Dubrova, E.; Backlund, L. A Side-Channel Attack on a Hardware Implementation of CRYSTALS-Kyber.

In Proceedings of the 2023 IEEE European Test Symposium (ETS), 22–26 May 2023; pp. 1–5. https://doi.org/10.1109/ETS56758.2
023.10174000.

35. Xagawa, K.; Ito, A.; Ueno, R.; Takahashi, J.; Homma, N. Fault-Injection Attacks Against NIST’s Post-Quantum Cryptography

Round 3 KEM Candidates. In Proceedings of the Advances in Cryptology–ASIACRYPT 2021; Tibouchi, M.; Wang, H., Eds.; Springer:

Cham, Switzerland, 2021; pp. 33–61.

36. Zhao, Y.; Pan, S.; Ma, H.; Gao, Y.; Song, X.; He, J.; Jin, Y. Side Channel Security Oriented Evaluation and Protection on Hardware
Implementations of Kyber. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 5025–5035. https://doi.org/10.1109/TCSI.2023.32886
00.

37. Bos, J.W.; Gourjon, M.O.; Renes, J.; Schneider, T.; Vredendaal, C.v. Masking Kyber: First- and higher-order implementations.

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 173–214. https://doi.org/10.46586/tches.v2021.i4.173-214.

38. Migliore, V.; Gérard, B.; Tibouchi, M.; Fouque, P.A. Masking Dilithium. In Proceedings of the Applied Cryptography and Network

Security; Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 344–362.

39. Cerdeira, D.; Martins, J.; Santos, N.; Pinto, S. ReZone: Disarming TrustZone with TEE Privilege Reduction. In Proceedings of the
31st USENIX Security Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022; pp. 2261–2279.

40. Ryan, K. Hardware-Backed Heist: Extracting ECDSA Keys from Qualcomm’s TrustZone. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; CCS ’19, pp. 181–194.

https://doi.org/10.1145/3319535.3354197.

https://doi.org/10.1007/978-3-030-57682-0
https://doi.org/10.1109/ACCESS.2024.3358213
https://doi.org/10.1109/ACCESS.2024.3358213
https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/ETS56758.2023.10174000
https://doi.org/10.1109/ETS56758.2023.10174000
https://doi.org/10.1109/TCSI.2023.3288600
https://doi.org/10.1109/TCSI.2023.3288600
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.1145/3319535.3354197

