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Abstract: Due to the single-agent-single-task arrangement, traditional multi-agent path planning methods 

frequently result in path overlap and excessive energy usage while handling cooperative tasks. The "many-to-

one" cooperative planning approach has been suggested as a result, and while it has improved, it still has 

issues with the large search space for meeting places and irrational job transfer locations. In order to 

accomplish multi-agent path planning with task handovers at multiple or single meeting points, this work 

introduces the Cooperative Dynamic Priority Safe Interval Path Planning with a multi-meeting-point and 

single-meeting-point solving mode switching (Co-DPSIPPms) algorithm. Firstly, the positional relationships 

among agents in the cooperative group are used to define the initial priority. Multiple meeting places are 

swiftly located using the improved Fermat point method. Secondly, taking into account that 
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1. Introduction 

The multi-agent path planning problem, commonly referred to as multi-agent path finding (MAPF), has drawn 

a lot of attention as a primary area of robotics research. Several academics have put out various multi-agent 

path planning algorithms [2-4]. Numerous domains, including intelligent transportation [5-7], warehouse 

logistics [8–10], emergency response [11], express sorting, and numerous others [12,13], have seen the 

successful use of these algorithms.  

Priority-based and non-priority-based multi-agent path planning algorithms can be generally classified 

according to whether or not agents need to be arranged in a predetermined planning sequence. Priority-based 

path planning algorithms include Hierarchical Cooperative A* (HCA*) algorithms [15] and those that use Safe 

Interval Path Planning (SIPP) as the fundamental search mechanism for multi-agent path planning [14]. 

Conversely, 



 

2 
 

both of which leverage the SIPP as the foundation for single-agent planning, ensuring a rapid solution 

speed while providing high-quality, collision-free path plans. In the realm of non-priority-based 

algorithms, CBS particularly stands out. It discovers collision-free paths for multiple agents through 

conflict search and resolution, with the capability to find optimal and complete solutions. However, the 

solution efficiency of CBS is closely tied to the desired solution quality, with higher quality demands 

often accompanied by more constraints and slower solution speeds. In response, Barer et al. successively 

proposed Enhanced CBS (ECBS) [21] and Improved CBS (ICBS) [22], further enhancing the algorithms’ 

solution efficiency. 

As task complexity continues to increase, multi-agent collaboration has emerged as a pivotal approach for 

efficiently accomplishing tasks. Consequently, a deeper exploration of multi-agent cooperative path planning 

techniques for multiple cooperative agent groups is paramount, particularly focusing on the critical aspect of 

task handovers. Given that single- meeting-point task handover strategies tend to lead to path redundancy 

and inefficiency, this paper innovatively proposes the Cooperative Dynamic Priority Safe Interval Path 

Planning with a multi-meeting-point and single-meeting-point solving mode switching (Co-DPSIPPms) 

algorithm. This algorithm aims to optimize path planning and enhance task execution efficiency. 

Compared with the solving efficient (Explicit estimation CBS, EECBS) algorithm [23] in MAPF, the 

Co-DPSIPPms algorithm incorporates the idea and method of multi-agent collaboration in accomplishing 

multiple tasks, which avoids a large number of agents to move long distances in the map area. It 

significantly reduces the energy expenditure of multi-agent systems. Compared with the Token Passing 

with the Task Swaps (TPTS) algorithm [24], which includes both pickup and delivery processes, the Co-

DPSIPPms algorithm, in which different types of agents work together collaboratively, not only enables 

multiple agents to collaborate on more complex tasks but also helps to improve the overall efficiency of 

the system in performing tasks. Compared with the same type of Cooperative CBS (Co-CBS) algorithm 

[25], the Co-DPSIPPms algorithm extends the number of collaborative agents in a single group from the 

original 2 to more than 10, and the efficiency of the task execution can be further improved. In addition, it 

provides a more efficient computational method for obtaining the convergence position of the collaborative 

agents, which effectively shortens the running time of the algorithm. The core contributions of this paper are 

summarized as follows: 

First, to address the task handover issue in multi-agent collaboration, a multi-meeting- point collaboration 

form is proposed, which comprehensively considers agent positions, task layouts, and priorities to 

optimize the selection of meeting points, thereby reducing energy consumption and unnecessary 

movements. 

Second, a multi-agent segmented path planning strategy is designed, optimizing paths based on the starting 

points of sub-tasks and meeting points to ensure rapid task acquisition and handover. Meanwhile, a flexible 

solving mode switching mechanism is introduced to overcome the limitations of a single mode, 

enhancing the algorithm’s adaptability and success rate. 
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Finally, through simulation experiments on benchmark maps combined with testing of real-world agent path 

plans, the effectiveness of the proposed algorithm is comprehensively validated, highlighting its significant 

advantages in improving path planning efficiency and reducing energy consumption. 

Article Structure: Section 2 presents the fundamentals of the SIPP, CBS algorithms, and related research 

for the collaborative task path planning problem. Section 3 defines the MAPF and Co-MAPF problems. 

Section 4 details the specific implementation of the proposed method, including the pseudocode and 

flowchart of the entire algorithm. Section 5 describes the experimental parameter settings, results, and 

analysis. Section 6 validates the feasibility of the algorithm solution through real-world experiments. Section 

7 summarizes the work and presents future outlooks. 

 

2. Related Work 

Basic Principles of the SIPP and CBS Algorithms 

As depicted in Figure 1, the SIPP algorithm assigns a safety interval list to each map grid, which records 

the agent’s occupancy information. When an agent expands into these grids, it directly consults the safety 

interval list to determine whether the grid can be occupied and the earliest possible time for occupation. 

The introduction of safe intervals significantly enhances the algorithm’s search efficiency. 
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Figure 1. Principle of the SIPP algorithm. 
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As shown in Figure 2, the CBS plans collision-free paths through a conflict-based search tree. Conflict 

detection is performed between every pair of agents. When a conflict is detected, the search tree splits at the 

conflicting location, adds constraints to the nodes, and replans the path for one of the agents. This process is 

repeated until collision-free paths are obtained for all the agents. 

 

Figure 2. Principle of the CBS algorithm. 

Research Progress on Multi-Agent Collaboration 

In today’s society, efficient task execution increasingly relies on sophisticated planning and collaboration 

within multi-agent systems [26,27]. Wang’s team [28] addressed the chal- lenge of cooperative operation 

planning in unmanned farms [29] by integrating priority queues with the Dijkstra algorithm [30], achieving 

efficient path planning. Chen et al. [31] optimized paths for swarm unmanned aerial vehicle (UAV) 

reconnaissance tasks using a fast evolutionary programming genetic algorithm. Li’s team [32] proposed the 

adaptive multi-population particle swarm optimization (AMP-PSO) algorithm to shorten paths for multi-AUV 

(Autonomous Underwater Vehicle) cooperative missions on the seabed. In complex environments, Zhang et 

al. [33] introduced the multi-objective particle swarm optimization algorithm with multi-mode collaboration 

based on reinforcement learning (MCMOPSO-RL), which optimizes multi-UAV collaborative paths and 

effectively handles. 

 Atia et al. [34] designed the Obstacle Guided Path Refinement (ORPG) algo- rithm to enable air–ground 

cooperation between UAVs and ground agents. However, these studies primarily focused on small-scale 

agents and tended to plan independently. 

When tackling complex path planning tasks for large-scale agent systems, Grenouil- leau et al. [35] built 

upon the multi-agent pickup and delivery (MAPD) problem [24] by proposing the multi-label A* (MLA*) 

algorithm, where an agent sequentially visits multiple goal locations, significantly enhancing solution 

efficiency. However, this study did not involve multi-agent collaboration. Atzmon et al. [36] addressed the 

multi-agent rendezvous problem with the Meet in the Middle (MM*) algorithm by finding optimal 

meeting points for multiple agents. Motes et al. [37] combined task decomposition with task planning, 
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introducing the Task and Motion Planning Conflict-Based Search (TMP-CBS) algorithm to handle more 

complex path-planning problems. Li Jiaoyang et al. [38] proposed the Rolling-Horizon Collision 

Resolution (RHCR) algorithm for continuous tasks, providing an effective solution for lifelong multi-

agent path-finding problems. 

Other scholars are actively exploring planning methods for multi-agents collaborating on a single complex 

task [39–41]. However, their research often focuses on path planning within a single cooperative group, 

neglecting collaboration among multiple cooperative agent groups. Collaborative path planning for multiple 

agent groups encompasses the fol- lowing scenarios: (1) Multiple mobile charging agents replenish energy-

depleted working agents, reducing travel time and energy consumption to fixed charging areas. (2) In MAPF 

scenarios, agent paths are optimized through deep collaboration to address path overlaps, minimize travel 

ranges, and reduce conflicts. (3) In warehouses, multiple sub-task agents collaborate at different workstations 

to deliver goods to transport agents jointly. To address the complex challenges of collaborative path planning 

for multiple agent groups, Greshler innovatively introduced the Co-CBS algorithm and systematically 

established the problem framework of Cooperative Multi-Agent Path Finding (Co-MAPF) for the first time 

[25]. However, given that research in the Co-MAPF field is still in its infancy, current Co-CBS algorithms 

mostly focus on simple collaboration scenarios involving two agents, struggling with scenarios involving 

multiple agents cooperating on complex tasks. The sharp contrast between the aforementioned diverse 

application requirements and the limitations of current research underscores the necessity and urgency of 

deepening the research on path planning for multi-group cooperative agents. 

Problem Description 

MAPF Definition 

MAPF Problem Definition: In a given undirected graph G = (V, E), we have a collection of agents A = {ai 

| 0 < i ≤ Nrobot}, where each agent ai is required to plan a collision-free path pi from a particular starting 

point si to a goal point gi. Figure 3 shows a schematic representation of a MAPF problem. The starting 

and goal points are unique for each agent, and the path pi is represented as a series of grid node and time 

combinations, i.e., pi={(vI, tI) | I = 0,1, 2..., costi)}, where costi represents the time cost required for the 

agent ai to move from the starting point to the goal point. 

When planning these paths, we must ensure that each agent’s chosen path satisfies Equations (1)–(3) to avoid 

agents entering obstacle regions or having point conflicts or edge conflicts with other agents. Equation (1) 

indicates that at any time point tI, no two agents can occupy the same node (point conflict). Equation (2) 

indicates that at any time point tI, no two agents can traverse the same edge at the same time (edge conflict). 

Equation (3) requires that each node vI in the path does not belong to the obstacle region to avoid collision. 

By satisfying these conditions, we can ensure that all agents can move safely and efficiently from their 

respective starting points to the goal point while avoiding any collision. 
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s.t. pi∩pj= ∅ i, j ∈ [1, Nrobot

 
(1) 

{vI = vJ−1} ∩
 

vJ = vI−1} = ∅, vI ∈ pi, vJ ∈ pj I ∈ [0, costi ], J ∈
 

0, 

costj

 
(2) 

 

vI ∈/ obstacles vI ∈ pi, I ∈ [0, costi ] (3) 

The optimization objective of the MAPF problem, as shown in Equation 

(4), is to minimize the total cost ( f lowtime), which is the sum of the time 

steps required for each agent to complete its respective task. When agents 

require little or no waiting, the flowtime value can effectively reflect the quality 

of the solution. 

 

f lowtime = min 

k·Ngr
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costi} (4) 
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Figure 3. Schematic diagram of the MAPF problem. 

2.1. Co-MAPF Description 

2.1.1. Co-MAPF Definition 

Co-MAPF Problem Definition: In the context of MAPF, the agents in the agent set C = {Ci|0 < 

i ≤ Ngroup} work together to accomplish the tasks tasksi within their respective collaborative groups 

through a k-to-1 collaboration model. Each collaborative group Ci consists of k sub-tasking agents 

and 1 task-executing agent, i.e., Ci = {((aj1, aj2..., ajk), bj)}, where (aj1, aj2..., ajk) represents the k sub-

task agents and bj represents the task execution agent. The collaborative task taski = {(τ1, τ2..., τk), g}, 

where (τ1, τ2..., τk) is the starting point of each sub-task agent and g is the common task goal point. 

Taking collaborative distribution as an example, the sub-task agents start from the initial position 

si, arrive at the corresponding sub-task position τi to obtain the goods and then arrive at the meeting 

point mi to carry out the handover of the goods with the task execution agents. After all the sub-task 

agents complete the handover of the goods, the task execution agent delivers these goods to the final 

goal point g. 

For the Co-MAPF problem, the core of the solution lies in planning collision-free paths for sub-task 

and task-executing agents under the constraints of the MAPF. Considering the difference between the Co-
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MAPF problem and the general MAPF problem regarding agent behavior during task execution, the task-

executing agents need to reach the task handover location and complete the task handover with the sub-

task agents before moving to the goal location. Using f lowtime as the optimization objective poses the 

following issues: First, all permutations and combinations of task handover locations and handover times 

lead to the need to consume a large amount of computational resources to obtain the least time-costly task 

meeting point, which makes it difficult to provide timely and effective solutions in complex scenarios. 

Furthermore, optimizing with f lowtime as the objective tends to result in longer paths, higher energy 

consumption, and reduced task volume due to frequent charging, ultimately impacting overall efficiency. 

Therefore, this paper adopts the total path length (length) as the primary optimization objective, as shown 

in Equation (5) (pathlengthi is the path of agent i), aiming to find a solution with a shorter total length of 

paths for all agents. This approach aims to reduce energy consumption during actual execution and 

enhance the system’s overall efficiency. 
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2.1.2. Two Forms of Collaborative Task Handover 

When addressing the Co-MAPF problem, the variability of task handover locations and the 

number of these locations (meeting points) significantly impact the planning outcomes. Therefore, 

selecting an appropriate strategy to determine the optimal number of meeting points is crucial for 

obtaining high-quality solutions. 

As shown in Figure 4, when adopting the collaboration form with a single meeting point, each set 

of cooperative task agents must reach a unique meeting point for their group to perform task 

handovers. This handover form is simple and direct, requires few computational resources, and can be 

solved using the Cooperative Dynamic Priority SIPP with a single meeting point (Co-DPSIPPs) 

algorithm. 

 

Figure 4. Collaborative form of single-meeting-point (Co-DPSIPPs). 

However, using a single meeting point for all task handovers can result in some sub- task agents needing 

to carry tasks and travel longer distances to reach point m, where the tasks are then transferred to the final 

destination point g, generating longer redundant paths. Therefore, a better solution can be obtained by 

adopting the collaboration form with multiple meeting points for task handovers, as illustrated in Figure 

5. Naturally, the computational process for multiple meeting points is more complex than for a single one. 

This problem can be solved using the Cooperative Dynamic Priority SIPP with multiple meeting points 

(Co-DPSIPPm) algorithm. 

Considering the characteristics of single-meeting-point and multi-meeting-point solv- ing modes, this paper 

proposes a Cooperative Dynamic Priority SIPP with a multi-meeting- point and single-meeting-point 

solving mode switching (Co-DPSIPPms) algorithm. The algorithm combines the advantages of both multi-

meeting-point and single-meeting-point solving modes, allowing the algorithm to switch to single-

meeting-point solving mode. 
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when the multi-meeting-point solving mode is in trouble. This approach enhances the algorithm’s success 

rate and meets the demands of complex collaborative tasks. 

 

Figure 5. Collaborative form of multi-meeting-point (Co-DPSIPPm). 

3. Co-DPSIPPms Algorithm 

Given the NP-hard nature of the Co-MAPF problem [42], producing effective paths within a 

limited time frame is often challenging using optimal algorithms directly in complex environments. 

Consequently, researchers have shifted their focus to exploring suboptimal algorithms [16,19–21], aiming 

to obtain suboptimal solutions that meet system requirements rapidly. Building upon SIPP as the 

fundamental path-planning strategy, this paper innovatively proposes a suboptimal path-planning algorithm 

that achieves efficient collaboration at multiple or single meeting points, thereby swiftly outputting 

optimized path solutions. 

Multiple Meeting Points Solution Method Considering Obstacles 

In the research methodology of this paper, whether it is solving for a single meeting point or a 

meeting point within a specific subgroup of multiple meeting points, we utilize the principle of the 

Fermat point to determine an initial meeting point m0 to narrow the search space and then quickly locate 

the final meeting point m through a grid search in the neighborhood of m0. We refer to this method as the 

improved Fermat point method. The core idea of the Fermat point principle is to find a point that 

minimizes the sum of the distances to N known coordinate points; this point is the Fermat point, as 

shown in Equation (6): 
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As shown in Figure 6, to obtain the meeting point m with the shortest total 

path length, we first input all relevant task coordinate points and quickly calculate 

an initial reference task intersection point m0 using the Fermat point method. 

Subsequently, we invoke the underlying path-planning algorithm to plan the paths 

from all involved task coordinate points to m0 and calculate the total length of 

these paths, denoted as Length0, which serves as the reference path length value. 

Then, we further plan the paths from these task coordinate points to all 

neighboring grid cells vi of m0 and compute the corresponding total path length 

Lengthvi. As shown in Equation (7), if Lengthvi ≤ Length0, we set m0 = vi and 

Length0 = Lengthvi. This process is repeated until all Lengthvi > Length0, 

at which 

 

 

point we set m = m0. Ultimately, we utilize the improved Fermat point method 

to obtain the task-meeting point m with the shortest total path length. 

 

m  
vi ∃  Lengthvi ≤ 

Length0 m0  ∀  

Lengthvi > Length0 

(7) 

 

 

Figure 6. Improved Fermat point method for obtaining single or specific subgroup meeting points. 
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1 ds f + dg f > dsg and ds f < dg f 

The solution may involve determining multiple meeting points in collaboration 

with multiple meeting points. In this case, we implement different strategies 

based on the number of agents within the cooperative group. When the 

number of agents in a single cooperative group n = 2 and the number of 

meeting points Nm = 1, then the determination of the meeting point is similar to 

that shown in Figure 6, using the improved Fermat point method directly. 

However, when the number of collaborative agents in a single group n > 2, the 

number of convergence points Nm ∈  [1, n − 1] and the number of agents in a 

single collaborative group n is determined by a combination of factors such as 

the task size, the scenario, and the map size. We need to follow these steps to 

solve multiple meeting points: 

(1) First, we collect the position information of each sub-task starting 

point τi, the starting point s of the execution agent, and the task destination 

point g. 

(2) Next, we connect the starting point s of the execution agent and the task 

destination point g to form the line segment Lsg. Then, we calculate the foot of 

the perpendicular from each sub-task starting point τi to the line segment Lsg, 

denoted as fci. As shown in Equation (8), based on the relative position of the 

horizontal coordinate of the foot of the perpendicular fci to the line segment 

Lsg, we divide the corresponding sub-tasks into three parts: pre-segment, intra-

segment, and post-segment. In Equation (8), ds f is the distance between point 

s and point f . Notably, in the particular case where the line segment Lsg is 

vertical, the division into three parts is based on the relative position of the 

vertical coordinate of the foot of the perpendicular fci to the line segment Lsg. 

 

Tpart = 2 ds f + dg f = dsg 

3 ds f + dg f < dsg and ds f > 

dg f 

(8) 

(3) For sub-task points of the pre-segment, we input their coordinates together 

with the starting point s of the execution agent and use the improved Fermat 

point method to solve for the nearest meeting point ps, as shown in the green box 

on the left side of Figure 7. 
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Figure 7. Schematic diagram of solving multiple meeting points within a 

collaborative group. 

(4) For the sub-task points of the post-segment, we input their coordinates 

together with the task destination point g and utilize the improved Fermat 

point method to solve for the nearest meeting point pg to these points, as 

illustrated in the blue box on the right side of Figure 7. 

(5) The process for determining the meeting points of the intra-segment is 

relatively complex. First, we sort the horizontal coordinates of the feet of the 

perpendiculars cor- responding to the sub-task points (τ0i) within the segment 

in ascending order using the bubble sort algorithm, ensuring that the feet 

closer to point s are ranked higher. This gives us an initial priority order for the 

agents within the segment. Subsequently, we adjust the starting order of the 

sub-task agents according to this priority order to accurately determine the 

meeting points in subsequent calculations. 

(6) After ordering adjustment, the sub-task points need to be paired into q 

subgroups. As shown in Equation (9), if the number of sub-task points (Nτ0 ) is 

odd, and a post-segment meeting point pg exists, we place the last sub-task points 

τ0k and pg into the last subgroup (SGq). If pg does not exist, we place τ0k and 

the task destination point g into a subgroup. 
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q =

 } 

SG 
τ0k, pg Nτ0 /2 = 1 and pg Exist = 

True 

{τ0k, g} Nτ0 /2 = 1 and pg Exist = 

False 

(9) 

(7) After sequencing adjustment, the first sub-task point in the ith 

subgroup within the same time segment is denoted as τi1. As shown in Figure 

8, we use ps or s (if ps does not exist) to determine the first meeting point m11 of 

the first subgroup within the segment. Then, using m11, τ11, and τ12, we calculate 

the second meeting point m12 of this subgroup. Following the same principle, we 

compute the two meeting points mi1 and mi2 for each remaining subgroup within 

the segment. If the second coordinate of the last subgroup is pg or g, then the 

meeting point is mq2 = pg or mq2 = g, respectively. Otherwise, mq2 is calculated 

using pg or g (if pg does not exist) along with τq1 and τq2. Finally, all the computed 

meeting points within the segment are stored in the meeting point list TaskL. 

(8) After solving all subgroup meeting points, if ps and pg exist, they are 

inserted at the beginning and end of TaskL, respectively. Subsequently, the 

task goal point g is added to the end of TaskL. Finally, the ith meeting point in 

TaskL is defined as mi, which is used in subsequent segmented path planning. 
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Figure 8. Schematic diagram of the meeting points of subgroups solved within 

the segment (Squares of the same color indicate the three coordinate points 

that need to be involved in solving a conflu- ence mi). 

Several vital points need to be explained here: First, during the solving 

process for the meeting points, we do not directly involve the starting point si 

of the sub-task agent, as the path from si to the sub-task starting point τi can be 

planned directly and independently of the meeting points. Second, the pre-

segment, intra-segment, and post- segment categorization of sub-task points, 

along with the priority adjustment of intra- segment sub-task points, ensures that 

the task-executing agent can perform task handovers with sub-task agents from 

nearby to far, minimizing redundant paths. Finally, as depicted in Figures 8 and 

9, each subgroup is designed with two meeting points, and the meeting points of 

the preceding subgroup directly participate in the calculations of the subsequent 

subgroup, enhancing interconnectivity, shortening path lengths, and improving 

efficiency and performance. 
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Figure 9. Comparison of task handover within a subgroup at one or two 

merging locations (Lines of the same color with arrows indicate the positional 

points involved in solving for the correspond- ing confluences). 

3.1. Segmented Path Planning Strategy 

As illustrated in Figure 10, to ensure that each group of collaborative agents 

efficiently and accurately completes task handovers at their respective meeting 

points, we implement segmented path-planning strategies explicitly tailored for 

sub-task agents and task execu- tion agents in terms of setting and planning 

goal points in the following way. During the prioritization process of planning 

collaborative task handover paths for sub-task agents, once a sub-task agent 

reaches its initial goal point (i.e., the starting point of the sub-task, 
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τi), its goal point is immediately updated to the corresponding final goal point 

(i.e., the meeting point, mi). 

 

Figure 10. Schematic diagram of segmented path planning for a collaborative 

task handover agent. 

After completing the segmented path planning for each sub-task agent within 

the collaborative group, it is necessary to compile the arrival time t0i (Equation 

(10)) of the last agent to reach each meeting point, which will then be utilized in 

the planning process for the task execution agent. 

toi = max
n
∑

Nτ0 πi

, 
(10) 

The complexity of planning collaborative task handover paths for the task 

execution agent escalates due to the interplay of multiple meeting points. To 

ensure a smooth transition of tasks, we must factor in the latest arrival time t0i 

recorded in (1) for sub-task agents at their respective meeting points. As the 

task execution agent plans routes to these meeting points mi, it compares its 

estimated arrival time ti with t0i. As shown in Equation (11), if ti is greater than or 

equal to t0i, indicating that all sub-task agents have arrived, the task execution 

agent will wait for one time step to facilitate the task handover with the arrived 

sub-task agents, followed by replacing its goal point. Conversely, if ti is less 

than t0i, signifying that the task execution agent has reached the meeting 

point ahead of the sub-task agents, it will execute a waiting operation until ti 

equals t0i+1 before proceeding with the goal point replacement. 
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wait =

 

 t 
1 ti ≥ t0i 

ti − t0i +  1 ti < t0i 

(11) 

By adopting this clear and well-defined segmented path planning strategy, 

we ensure the orderliness and efficiency of the collaborative agents during 

task execution, thereby minimizing confusion and delays in the task handover 

process. 

3.2. Hybrid Solution Mode Switching Mechanism 

When utilizing a collaborative path planning approach with multiple 

meeting points, while it can offer optimization in path length, in certain 

specific scenarios, the numerous and dispersed handover points within the 

movement-constrained areas of the map can make it exceedingly challenging, 

if not impossible, to identify and reach these meeting points, potentially 

leading to solution failure. In such cases, the more straightforward and more 

direct approach of solving for a single meeting point may paradoxically have 

a greater chance of successfully finding a solution. Consequently, this paper 

proposes an intelligent switching strategy that integrates both the multi-

meeting-point and single- meeting-point solving modes. The aim is to 

prioritize ensuring the algorithm’s success 
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Multi-meeting-point 

solving model (c=0) 
Start 

=

  

 

 

rate while also optimizing the path length. As depicted in Equation (12) and 

Figure 11, the algorithm initially attempts to solve problems using the multi-

meeting-point solving mode (MMP). If the solving time in this mode t ≥ 

1/6·T0 and the number of solving failures in the multi-meeting-point solving 

mode c ≥ 1, the algorithm automatically switches to the single-meeting-point 

solving mode (SMP). Even in this simplified mode, if the solution remains 

elusive, the algorithm continues to seek a solution by adjusting the group 

priorities. The solution complexity is higher in the multi-meeting-point solving 

model because a collaborative group needs to solve for multiple meeting 

locations. In contrast, a collaborative group only needs to solve for one meeting 

location in the single-meeting-point solving model, which has a lower solution 

complexity in comparison. However, the path solution obtained by all agents 

performing task handover at a single meeting point produces redundant paths that 

are longer and consume more energy to move than performing task handover at 

multiple meeting points. Therefore, the multi-meeting-point solving model is 

preferred for solving when conditions allow one to obtain a better path 

scheme. 

MD 
MMP t < 1/6·T0 or c < 1 

SMP t ≥ 1/6·T0 and c ≥ 

1 

(12) 

 

successful 

 

Figure 11. Schematic diagram of switching between multi-meeting-point 

and single-meeting-point solving modes. 

t < 1/6·T0 

failed Group priority 

adjustment 

t ≥ 1/6·T0 

and c≥ 1 c+=1 

failed 
successful Returns a path 

solution 

Single-meeting-point 

solving model 

Group priority 

adjustment 
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In addition, two prioritization methods are used in this paper to obtain better 

optimal solutions and higher success rates. In the multi-meeting-point solving 

mode, the algorithm performs priority adjustments within individual 

collaborative groups to ensure the task execution agent can hand over tasks 

with sub-task agents in an optimal sequence, thereby reducing unnecessary 

path redundancy. For the entire multi-agent system, priority ad- justments 

focus on the entire group, aiming to enhance the success rate of the solution by 

optimizing interactions between groups. The group prioritization adjustment 

method is shown in Equation (13), where PGi is the group priority of groupi 

and PGF is the priority of the group where the solution failed: 

 

 

PGi = 

1 PGi = 

PGF i + 1  PGi 

< PGF 

 
i PGi > 

PGF 

 

(13) 

3.3. Pseudocode and Flowchart of the Co-DPSIPPms Algorithm 

The pseudocodes for the Co-DPSIPPms algorithm are presented in Algorithms 

1 and 2. Algorithm 1 is the planning system’s upper layer and is responsible for 

priority adjustments, solving mode switching, and safety interval updates. 

Algorithm 2, conversely, constitutes 



 

22 
 

 

the lower layer of the planning system, tasked with segmenting and planning 

collision-free paths for individual agents. 

 

Algorithm 1: Co-DPSIPPms algorithm 

 

input: Group = {. . . , groupi = (agentsa, agentb, taski ), . . .}, Map, T0, 

MD = MMP 

%MD = MMP, initial use of multi-meeting-point solving mode 

output: Paths, length 

1: while t < T0 do 

2: for groupi in Group do 

3: if MD=MMP then 

4: newGoal ← Mi1←CalMultipleMeetingPoints(groupi ) 

%Solving for multiple meeting points 

5: end if 

6: if MD = SMP then 

7: newGoal ← Mi2←CalSingleMeetingPoint(groupi ) 

%Solving for single meeting point 

8: end if 

9: for agent in groupi do 

10: res,  pathi ←iSIPP( agent, id, Map, newGoal) 

11: if res = success f ul then 

12: pathi insert Paths, update Sa f eInterval 

%Update safe intervals to avoid future conflicts 

13: end if 

14: if res = f ailed then 

15: if MD = MMP and t ≥ 1/6·T0 then 

16: MD = MSP 

17: end if 

18: newGroup←DeterReScheduling(groupi , Group) 

%Set the priority of failed groups to the highest 

19: Group←newGroup 

20: Paths←∅ ,Sa f e_interval←InitialSa f eInterval 
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21: end if 

22: end for 

23: end for 

24: return Paths, length 

25: end while 

26: return , ∅ , 0 

 

Algorithm 2: iSIPP algorithm 

 

input: agent, id, Map, newGoal,Replaced=False 

output: path 

1: while curNode /= agentGoal do 

2: expand nodes 

using A* 3: if OPEN 

= ∅  then 

4: return f ailed, ∅  

5: end if 

6: if not Replaced then 

7: if curNode = agentGoal then 

8: if agent is agentb then 

9: Perform the wait operation according to Equation (11) 

10: end if 

11: agentGoal = newGoalid 

%A unvisited meeting location as new 

goal point 12: if newGoalid is agentFinalGoal 

then 

13: Replaced = True %Plan to the ultimate goal 
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Algorithm 2: iSIPP 

algorithm 14: end if 

15: end if 

16: end if 

17:   if Replaced then 

18: if curNode = agentGoal 

then 19:  return success f 

ul, path 20: end if 

21: end if 

22: end while 

 

Figure 12 details the complete flow of the Co-DPSIPPms algorithm, which comprises 

six crucial components: meeting point solving, segmented path planning, global 

safety interval updating, switching between multi-meeting-point and single-

meeting-point solving modes, and group priority adjustments. These components 

work in concert to ensure that the algorithm can optimize the path length and 

efficiency of task execution while guaranteeing a high success rate of the 

solution. 
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Figure 12. Flow chart of the Co-DPSIPPms algorithm. 

In the Co-DPSIPPms algorithm, the majority of the computation time is focused on solving 

for the meeting points. When Ngroup collaborative groups are operating simulta- neously, with 

each group containing n agents and each group requiring k meeting points for task handovers, the 

solution for each meeting point involves r iterations of the search. Under this scenario, the 

underlying single-agent path planning algorithm will be invoked 
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i=0 

 

 

k·r·n·Ngroup times during the process of solving for the meeting points. As a result, the time 

complexity of solving all meeting points can be expressed as follows: 

 

n 

O(Time) = k·r·Ngroup ∑ O(b)
Ti

 

i=0 

 

(14) 

In Equation (14), b represents the number of states that the algorithm can expand outward 

during the node expansion process, Ti denotes the length of the path for a sin- 

gle agent (as a measure of path search complexity), and ∑
n
 O(b)

Ti
 represents the 

time 

complexity of formally planning the path once all goal points are known. Due to the need to 

repeatedly invoke the underlying path planning algorithm while solving for meeting points, the 

time complexity of this part is almost k·r·Ngroup times that of formally planning the path. These data 

show a significant increase in the computational complexity of the 

Collaborative Multi-Agent Path Finding problem (Co-MAPF) compared to the classical MAPF 

problem. This increase is primarily attributed to the additional computations and iterative 

searches introduced by solving for meeting points. 

4. Simulation Experimental Analysis 

4.1. Experimental Parameter Settings 

This paper compares the performances of the different collaborative agent path- planning 

algorithms through three simulation experiments. Simulation Experiment 1 primarily focuses on 

the performance of the Co-CBS algorithm and the Co-DPSIPPms algorithm in scenarios where 

only two agents collaborate. Simulation Experiment 2 pro- vides a more comprehensive evaluation 

of three algorithms: Cooperative Dynamic Priority SIPP with a single meeting point (Co-

DPSIPPs), Cooperative Dynamic Priority SIPP with multiple meeting points (Co-DPSIPPm), and 

Cooperative Dynamic Priority SIPP with multi-meeting-point and single-meeting-point solving 

mode switching (Co-DPSIPPms). Additionally, Simulation Experiment 3 exemplifies the impact 

of the number of agents within a single collaborative group on the solution results of both the 

Co-DPSIPPs and Co-DPSIPPms algorithms. 

The experiments were conducted on a Windows 10 PC with an Intel Core i7 (3.6 GHz) CPU and 

32 GB of RAM, and the algorithms ran on an Ubuntu 20.04 environment installed on a VMware17 

virtual machine to ensure a fair comparison on a unified platform. In order to evaluate the 

algorithm’s solution efficiency, we set each planning limit time T0 to 5 min. If an algorithm failed 
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to return a valid solution within this time, the corresponding instance was considered a failure. 

The experimental maps included standard Nest, Empty, Maze, and Warehouse maps, as 

shown in Figure 13, simulating environments of varying complexity. For experiments involving 

n agents within a single collaborative task, we utilized the n sets of coordinates from the instance 

files (i.e., Scenarios files) accompanying the standard maps to set the starting positions of the 

agents, sub-task starting points, and task goal points. The starting point and goal point of the first 

sub-task correspond to the starting and goal points of the first set of coordinates, the starting 

point of the first sub-task agent and the starting point of the task execution agent correspond to 

the starting and goal points of the second set of coordinates, and the starting points of the 

remaining n-2 sub-task agents and sub- task starting points correspond to the starting and goal 

points of the remaining n-2 sets of coordinates. 

In Simulation Experiment 1, we set the number of agents within a single collaborative group to 

n = 2. We gradually increased the number of collaborative task groups Ngroup from 6 to 30 to 

evaluate the performance of the algorithms under different collaboration group sizes. In 

Simulation Experiment 2, we fixed the number of agents within a single collaborative group to n 

= 10. We incrementally increased the number of collaborative task groups Ngroup from 1 to 5 to 

analyze the performance of the algorithms in multi-group collaboration scenarios. To further 

explore the impact of the number of agents within a 
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single collaborative group on the experimental results, we conducted an additional set of 

experiments where Ngroup=1, and the number of agents within a single collaborative group n was 

gradually increased from 5 to 25. Each experiment was repeated 5 times, with each test comprising 

25 instances, to ensure the reliability and stability of the results. The runtime metric represents the 

time the algorithm takes to return a valid solution during the solution process, reflecting the 

algorithm’s solution efficiency. When comparing runtime, total path length (length), and total 

path cost ( f lowtime), we took the average values of public solutions as the basis for comparison 

to more accurately assess the merits of the algorithms. Additionally, we bolded the best-

performing data among several algorithms for a more intuitive comparison. 

 

(a) den312d (b) empty-48-48 

 

(c) maze-32-32-4 (d) warehouse-10-20-10-2-1 

Figure 13. Nest, Empty, Maze, and Warehouse benchmark maps. 

In Figure 14, we present the multi-agent path planning algorithm’s 

planned paths utilizing multiple and single-meeting-point collaboration 
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formats, and a line of one color denotes a robot’s path. Figure 14a,b 

corresponds to these two collaboration formats, respectively, involving 9 sub-

task agents and 1 task execution agent working together to complete tasks. In 

the figures, the green circles represent the starting points of the task execution 

agent, the red rectangles mark the task goal points, and the red five-pointed 

stars indicate the meeting points calculated by the algorithm. It is evident from 

the figures that the path in the single meeting-point-collaboration format tends 

to converge toward a single handover point, leading to longer redundant 

segments in the path. In contrast, the path in the multi-meeting-point 

collaboration format allows for task handovers at multiple different handover 

points, enabling more flexible path planning and significantly reducing the 

length of redundant paths. This optimization not only improves the overall 
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task execution efficiency but also decreases the energy consumption of 

agents during task execution. 

 

(a) Single meeting point (9-to-1) (b) Multiple meeting points (9-to-1) 

Figure 14. Path diagram of a single group collaborative task (n = 10). 

4.2. Simulation Experiment 1 

Figure 15 and Table 1 present a comparative analysis of the test results 

between the Co-CBS algorithm and the Co-DPSIPPms algorithm when only 

two agents collaborate. In the 1-to-1 collaboration scenario, as depicted in 

Figure 15, the Co-DPSIPPms algorithm demonstrates significant advantages 

over the Co-CBS algorithm, particularly regarding the solution success rate. 

Specifically, across four different maps (Nest, Empty, Maze, and Warehouse), 

the solution success rate of Co-DPSIPPms improved by 60%, 53.6%, 19.2%, 

and 24%, respectively, showing remarkable superiority. Furthermore, by 

comparing the maximum number of solvable collaboration task groups 

between the two algorithms, we found that Co-DPSIPPms was able to solve 

more collaboration task groups on all four maps. Notably, on the Nest and 

Maze maps, the number of solvable collaboration task groups achieved by 

Co-DPSIPPms was more than twice that by Co-CBS. In summary, the Co- 

DPSIPPms algorithm boasts a higher solution success rate and handles more 

collaboration task groups and agent instances on these four maps, 

demonstrating more robust solving capabilities and adaptability. 

 



 

31 
 

Table 1. Comparison of path solutions between Co-CBS and Co-DPSIPPms  

algorithms in 1-to-1 collaboration. 

 

Map

 Ngro

up 

Length/Step Flowtime/Step Runtime/s 

 

 

 

 

Note: The data marked in bold are the best performing data from the results of the comparison algorithm. 

 Co-DPSIPPms Co-CBS Co-DPSIPPms Co-CBS Co-DPSIPPms Co-CBS 

den312d 6 768.8 893.9 1014.2 972.7 16.12 43.42 

 6 467.88 536.12 665.52 592 4.63 8.47 
empty-48-48 12 950.72 1089.94 1253.72 1194.44 17.68 22.29 

 18 1426.6 1607.8 1912.2 1777.2 54.29 128.65 

maze-32-32-4 6 620.75 636.25 786.5 729.75 28.91 46.89 

warehouse- 6 1254.4 1396.93 1630.86 1540.2 10.34 70.71 

10-20-10-2-1 12 2379.33 2598.33 3096 2847.33 26.38 156.83 
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(c) maze-32-32-4 (d) warehouse-10-20-10-2-1 

Figure 15. The success rates of the Co-CBS and Co-DPSIPPms algorithms in 

the 1-to-1 collaboration. 

Table 1 reveals that the Co-DPSIPPms algorithm exhibits significant 

advantages over the Co-CBS algorithm regarding the total path length and algorithm solving 

time. Specif- ically, on the Nest, Empty, Maze, and Warehouse maps, the path solutions 

generated by Co-DPSIPPms are 13.9%, 12.2%, 2.4%, and 9.3% shorter in total path length, 

respectively, than those generated by Co-CBS. Concurrently, the solving times are reduced 

by 62.8%, 41.3%, 38.3%, and 84.2%, respectively. These results imply that the Co-

DPSIPPms algo- rithm can find path solutions in a much shorter time in addition to maze 

maps, and the obtained path solutions are able to reduce energy consumption by about 10% 

compared to the Co-CBS algorithm, which is an essential economic and environmental 

benefit in practical applications. 

However, regarding the total path cost, the Co-DPSIPPms algorithm is 

inferior to the Co-CBS algorithm. This is primarily due to the optimization objective of the Co-

DPSIPPms algorithm, which focuses on minimizing the total path length. In some scenarios, to 

avoid unnecessary energy consumption, the task execution agent may need to wait at the meeting 

point for the sub-task agents to arrive for task handover, resulting in a higher path cost than 

the Co-CBS algorithm. Nevertheless, considering the significant advantages of the Co- 

DPSIPPms algorithm in terms of path length and solving time, it holds a high application value 

and potential in multi-agent cooperative path planning. 

Table 2. Path solution comparison of the Co-DPSIPPs and Co-DPSIPPms 

algorithms in the 9-to-1 collaboration. 

 

Map

 Ngro

up 

Length/Step Flowtime/Step Runtim
 Co-DPSIPPms Co-DPSIPPs Co-DPSIPPms Co-DPSIPPs Co-DPSIPPms Co-DPSIPPm 

1 760.38 806 852.84 929 21.18 7.86 
2 1433.6 1638.6 1594.4 1860.6 121.37 73.37 

den312d 3 2262 2446 2567.5 2765.5 157.45 103.88 
4 2702 3307.5 2920.25 3793.25 233.2 283.64 
5 3190 4083 3433 4613 241.32 300 

1 454.25 495.85 506.15 565.85 2.64 3.05 
2 855.66 1014.44 922.16 1153.33 35.71 26.92 

empty-48-48 3 1253.53 1537.33 1363.6 1757.93 39.85 84.91 
4 1653 2076.63 1770.63 2356.81 116.41 213.75 
5 2108.1 2607.44 2284.67 2951.22 213.45 293.93 

1 604.9 637.7 727 757.8 19.76 8.92 
maze-32-32-4 

2
 1213.75 1404.87 1427 1695.87 42.35 25.61 

3 1797.5 2087.5 2152.5 2631.5 80.04 50.82 
4 2612.66 2808 3475.66 3812 149.02 92.46 

1 951.3 1113.95 1035.08 1268.91 7.94 4.49 
warehouse- 

2
 2185.68 2526.36 2373.89 2860.26 65.34 74.71 

10-20-10-2-1 
3

 3689.61 3813.53 4154.53 4295.53 131.82 118.85 
4 5373.2 5523.2 5984 6185.4 212.97 167.66 
5 6632.66 7100.66 7451 7969 259.82 229.61 
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Note: The data marked in bold are the best performing data from the results of the comparison algorithm. 

 

Furthermore, the data in Table 2 reinforce the superiority of the Co-DPSIPPms algo- rithm in 

path planning. Regarding the average total path length, Co-DPSIPPms achieves reductions of 13.14%, 

16.34%, 10.5%, and 8.12% compared to Co-DPSIPPs across the four maps. This significant 

improvement is attributed to the ability of the Co-DPSIPPms algo- rithm to guide the sub-task agents 

and task execution agents to select more suitable locations on the map for task handover, effectively 

reducing redundant paths. Co-DPSIPPms not only decreases the energy consumption of the agentic 

system but also saves operational costs. The Co-DPSIPPms algorithm also demonstrates a clear 

advantage regarding the average to- tal path cost, reducing the total cost by 15.52%, 20.04%, 11.68%, and 

9.68% on the four maps, respectively. Regarding algorithm runtime, on the relatively spacious Nest 

and Empty maps, the Co-DPSIPPms algorithm, which switches between multiple-meeting-point and 

single-meeting-point solving modes when Ngroup > 3, can return solutions faster. However, in complex 

and narrow maps, such as Maze and Warehouse, the Co-DPSIPPs algorithm with a single-meeting-

point solving mode returns solutions more quickly. 

From the above results, it is evident that the Co-DPSIPPms algorithm performs ex- ceptionally 

well on the Nest, Empty, and Maze maps, while its advantage diminishes slightly on the Warehouse 

map with severely restricted mobility. Compared to Co-DPSIPPs, Co-DPSIPPms significantly improves 

the solution success rate, shortens the path length, and reduces the total path cost at the expense of a 

slightly longer algorithm runtime. 

5.3. Simulation Experiment 3 

To further investigate the impact of increasing the number of cooperative agents on the performance 

of the two algorithms, we conducted tests on an obstacle-free empty map, and the results are presented in 

Figure 17. 

By comparing instances where both Co-DPSIPPs and Co-DPSIPPms can find solutions in a single 

run, we observed that as the number of agents in a single cooperative group increases, the Co-DPSIPPms 

algorithm, which employs multiple meeting points, exhibits increasingly significant optimization effects 

regarding path length and total path cost. This is because, as the number of agents in a single 

cooperative group increases, the single- 

 

meeting-point approach is more prone to generating redundant paths. In contrast, the Co-DPSIPPms 

algorithm effectively reduces these redundancies through the multi-meeting- point approach. However, 

when the number of agents reaches a certain threshold, the optimization effect tends to stabilize due to 

the influence of other agents’ movements. This result indicates that within a certain range of the 

number of single-group cooperative agents, the Co-DPSIPPms algorithm, which operates through the 

collaboration of multiple meeting points, can achieve a better path solution by sacrificing a certain 

amount of solution  

 

 

 



 

35 
 

5. Conclusions 

Co-MAPF surpasses traditional MAPF in tackling tasks and significantly enhances system 

efficiency in most cases. In this paper, we innovatively propose a multi-robot path- planning algorithm 

to solve the problem of “many-to-one” collaborative robot tasks, which allows collaborative agents to 

perform task handovers at multiple meeting points. This advancement effectively mitigates the issue of 

excessively long redundant paths that occur during task handovers at a single meeting point. Furthermore, 

we incorporate an automatic switching strategy between multi-meeting-point and single-meeting-point 

solving modes to boost solution success rates. When the multi-meeting-point solving mode 

encounters difficulties, the algorithm seamlessly transitions to the single-meeting-point solving mode, 

ensuring a greater likelihood of successful solutions. 

The simulation results unequivocally demonstrate the superiority of the proposed Cooperative 

Dynamic Priority Safe Interval Path Planning with multi-meeting-point and single-meeting-point 

solving mode switching (Co-DPSIPPms) algorithm. Compared to the Co-CBS algorithm, Co-

DPSIPPms achieves an average 39.20% increase in the solution success rate, a 9.45% reduction in 

total path length, and a 56.65% decrease in the solution time. Compared to Co-DPSIPPs, the variant 

with a single meeting point, Co-DPSIPPms, exhibits a 15.4% improvement in the solution success rate, 

a 12.03% reduction in the total path length, and a 14.23% decrease in the total path cost. These findings 

indicate that the Co- DPSIPPms algorithm significantly enhances solution success rates and shortens path 

lengths. Notably, as the number of agents within a specific range increases, the optimization effects on 

the total path length and cost become more pronounced, highlighting the scalability. 

Efficiency of the proposed algorithm. Finally, the practicality and feasibility of the path planning 

solution devised by our algorithm are further validated through the actual execution results of 

CoCube agents. 

In the future, we will focus on several core areas to deeply optimize algorithms, in- cluding 

enhancing algorithm execution efficiency, improving the quality of path planning solutions, achieving 

scientific and rational task allocation, and strengthening the collabora- tive working mechanism among 

multiple agents. Our goal is to realize more efficient and superior path-planning solutions. 
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