

1

MULTI-AGENT COLLABORATIVE PATH PLANNING ALGORITHM WITH

MULTIPLE MEETING POINTS

Dr Rekha

Assistant professor in Electronics Government College (Autonomous)

Kalaburagi

Abstract: Due to the single-agent-single-task arrangement, traditional multi-agent path planning methods

frequently result in path overlap and excessive energy usage while handling cooperative tasks. The "many-to-

one" cooperative planning approach has been suggested as a result, and while it has improved, it still has

issues with the large search space for meeting places and irrational job transfer locations. In order to

accomplish multi-agent path planning with task handovers at multiple or single meeting points, this work

introduces the Cooperative Dynamic Priority Safe Interval Path Planning with a multi-meeting-point and

single-meeting-point solving mode switching (Co-DPSIPPms) algorithm. Firstly, the positional relationships

among agents in the cooperative group are used to define the initial priority. Multiple meeting places are

swiftly located using the improved Fermat point method. Secondly, taking into account that

Keywords: multi-agent; task handover; multiple meeting points; safe intervals; many-to-one

collaboration; segmented path planning.

1. Introduction

The multi-agent path planning problem, commonly referred to as multi-agent path finding (MAPF), has drawn

a lot of attention as a primary area of robotics research. Several academics have put out various multi-agent

path planning algorithms [2-4]. Numerous domains, including intelligent transportation [5-7], warehouse

logistics [8–10], emergency response [11], express sorting, and numerous others [12,13], have seen the

successful use of these algorithms.

Priority-based and non-priority-based multi-agent path planning algorithms can be generally classified

according to whether or not agents need to be arranged in a predetermined planning sequence. Priority-based

path planning algorithms include Hierarchical Cooperative A* (HCA*) algorithms [15] and those that use Safe

Interval Path Planning (SIPP) as the fundamental search mechanism for multi-agent path planning [14].

Conversely,

2

both of which leverage the SIPP as the foundation for single-agent planning, ensuring a rapid solution

speed while providing high-quality, collision-free path plans. In the realm of non-priority-based

algorithms, CBS particularly stands out. It discovers collision-free paths for multiple agents through

conflict search and resolution, with the capability to find optimal and complete solutions. However, the

solution efficiency of CBS is closely tied to the desired solution quality, with higher quality demands

often accompanied by more constraints and slower solution speeds. In response, Barer et al. successively

proposed Enhanced CBS (ECBS) [21] and Improved CBS (ICBS) [22], further enhancing the algorithms’

solution efficiency.

As task complexity continues to increase, multi-agent collaboration has emerged as a pivotal approach for

efficiently accomplishing tasks. Consequently, a deeper exploration of multi-agent cooperative path planning

techniques for multiple cooperative agent groups is paramount, particularly focusing on the critical aspect of

task handovers. Given that single- meeting-point task handover strategies tend to lead to path redundancy

and inefficiency, this paper innovatively proposes the Cooperative Dynamic Priority Safe Interval Path

Planning with a multi-meeting-point and single-meeting-point solving mode switching (Co-DPSIPPms)

algorithm. This algorithm aims to optimize path planning and enhance task execution efficiency.

Compared with the solving efficient (Explicit estimation CBS, EECBS) algorithm [23] in MAPF, the

Co-DPSIPPms algorithm incorporates the idea and method of multi-agent collaboration in accomplishing

multiple tasks, which avoids a large number of agents to move long distances in the map area. It

significantly reduces the energy expenditure of multi-agent systems. Compared with the Token Passing

with the Task Swaps (TPTS) algorithm [24], which includes both pickup and delivery processes, the Co-

DPSIPPms algorithm, in which different types of agents work together collaboratively, not only enables

multiple agents to collaborate on more complex tasks but also helps to improve the overall efficiency of

the system in performing tasks. Compared with the same type of Cooperative CBS (Co-CBS) algorithm

[25], the Co-DPSIPPms algorithm extends the number of collaborative agents in a single group from the

original 2 to more than 10, and the efficiency of the task execution can be further improved. In addition, it

provides a more efficient computational method for obtaining the convergence position of the collaborative

agents, which effectively shortens the running time of the algorithm. The core contributions of this paper are

summarized as follows:

First, to address the task handover issue in multi-agent collaboration, a multi-meeting- point collaboration

form is proposed, which comprehensively considers agent positions, task layouts, and priorities to

optimize the selection of meeting points, thereby reducing energy consumption and unnecessary

movements.

Second, a multi-agent segmented path planning strategy is designed, optimizing paths based on the starting

points of sub-tasks and meeting points to ensure rapid task acquisition and handover. Meanwhile, a flexible

solving mode switching mechanism is introduced to overcome the limitations of a single mode,

enhancing the algorithm’s adaptability and success rate.

3

a

1

b

s2

c
paths：
p1={(c3,0),(c2,1),(c1,2)}

p2={(b1,0),(a1,1),(a2,2),(a3,3),(b3,4),(c3,5),(c2,6)}

2

3 s1

Safe intervals for partial grids：
c3:{(1,4),(6,∞)}

c2:{(0),(2,5)}

c1:{(0,1)}

safe interval

...

...

4
collision interval

2 g

g1

∞

∞

Finally, through simulation experiments on benchmark maps combined with testing of real-world agent path

plans, the effectiveness of the proposed algorithm is comprehensively validated, highlighting its significant

advantages in improving path planning efficiency and reducing energy consumption.

Article Structure: Section 2 presents the fundamentals of the SIPP, CBS algorithms, and related research

for the collaborative task path planning problem. Section 3 defines the MAPF and Co-MAPF problems.

Section 4 details the specific implementation of the proposed method, including the pseudocode and

flowchart of the entire algorithm. Section 5 describes the experimental parameter settings, results, and

analysis. Section 6 validates the feasibility of the algorithm solution through real-world experiments. Section

7 summarizes the work and presents future outlooks.

2. Related Work

Basic Principles of the SIPP and CBS Algorithms

As depicted in Figure 1, the SIPP algorithm assigns a safety interval list to each map grid, which records

the agent’s occupancy information. When an agent expands into these grids, it directly consults the safety

interval list to determine whether the grid can be occupied and the earliest possible time for occupation.

The introduction of safe intervals significantly enhances the algorithm’s search efficiency.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 ... ∞

Figure 1. Principle of the SIPP algorithm.

4

1

2

3

a

g1

b

s2

c d

g2

s1

cost:8

constraint:{}

path：
p1：d3,c3,c2,c1,b1,a1

p2：b1,b2,c2,d2

cost:9
constraint:
{(agent1,c2,2)}

paths：
p1：d3,c3,c3,c2,c1,b1,a1
p2：b1,b2,c2,d2

cost:9

constraint:
{agent2,c2,2}

paths：
p1：d3,c3,c2,c1,b1,a1

p2：b1,b2,b2,c2,d2

As shown in Figure 2, the CBS plans collision-free paths through a conflict-based search tree. Conflict

detection is performed between every pair of agents. When a conflict is detected, the search tree splits at the

conflicting location, adds constraints to the nodes, and replans the path for one of the agents. This process is

repeated until collision-free paths are obtained for all the agents.

Figure 2. Principle of the CBS algorithm.

Research Progress on Multi-Agent Collaboration

In today’s society, efficient task execution increasingly relies on sophisticated planning and collaboration

within multi-agent systems [26,27]. Wang’s team [28] addressed the chal- lenge of cooperative operation

planning in unmanned farms [29] by integrating priority queues with the Dijkstra algorithm [30], achieving

efficient path planning. Chen et al. [31] optimized paths for swarm unmanned aerial vehicle (UAV)

reconnaissance tasks using a fast evolutionary programming genetic algorithm. Li’s team [32] proposed the

adaptive multi-population particle swarm optimization (AMP-PSO) algorithm to shorten paths for multi-AUV

(Autonomous Underwater Vehicle) cooperative missions on the seabed. In complex environments, Zhang et

al. [33] introduced the multi-objective particle swarm optimization algorithm with multi-mode collaboration

based on reinforcement learning (MCMOPSO-RL), which optimizes multi-UAV collaborative paths and

effectively handles.

 Atia et al. [34] designed the Obstacle Guided Path Refinement (ORPG) algo- rithm to enable air–ground

cooperation between UAVs and ground agents. However, these studies primarily focused on small-scale

agents and tended to plan independently.

When tackling complex path planning tasks for large-scale agent systems, Grenouil- leau et al. [35] built

upon the multi-agent pickup and delivery (MAPD) problem [24] by proposing the multi-label A* (MLA*)

algorithm, where an agent sequentially visits multiple goal locations, significantly enhancing solution

efficiency. However, this study did not involve multi-agent collaboration. Atzmon et al. [36] addressed the

multi-agent rendezvous problem with the Meet in the Middle (MM*) algorithm by finding optimal

meeting points for multiple agents. Motes et al. [37] combined task decomposition with task planning,

5

introducing the Task and Motion Planning Conflict-Based Search (TMP-CBS) algorithm to handle more

complex path-planning problems. Li Jiaoyang et al. [38] proposed the Rolling-Horizon Collision

Resolution (RHCR) algorithm for continuous tasks, providing an effective solution for lifelong multi-

agent path-finding problems.

Other scholars are actively exploring planning methods for multi-agents collaborating on a single complex

task [39–41]. However, their research often focuses on path planning within a single cooperative group,

neglecting collaboration among multiple cooperative agent groups. Collaborative path planning for multiple

agent groups encompasses the fol- lowing scenarios: (1) Multiple mobile charging agents replenish energy-

depleted working agents, reducing travel time and energy consumption to fixed charging areas. (2) In MAPF

scenarios, agent paths are optimized through deep collaboration to address path overlaps, minimize travel

ranges, and reduce conflicts. (3) In warehouses, multiple sub-task agents collaborate at different workstations

to deliver goods to transport agents jointly. To address the complex challenges of collaborative path planning

for multiple agent groups, Greshler innovatively introduced the Co-CBS algorithm and systematically

established the problem framework of Cooperative Multi-Agent Path Finding (Co-MAPF) for the first time

[25]. However, given that research in the Co-MAPF field is still in its infancy, current Co-CBS algorithms

mostly focus on simple collaboration scenarios involving two agents, struggling with scenarios involving

multiple agents cooperating on complex tasks. The sharp contrast between the aforementioned diverse

application requirements and the limitations of current research underscores the necessity and urgency of

deepening the research on path planning for multi-group cooperative agents.

Problem Description

MAPF Definition

MAPF Problem Definition: In a given undirected graph G = (V, E), we have a collection of agents A = {ai

| 0 < i ≤ Nrobot}, where each agent ai is required to plan a collision-free path pi from a particular starting

point si to a goal point gi. Figure 3 shows a schematic representation of a MAPF problem. The starting

and goal points are unique for each agent, and the path pi is represented as a series of grid node and time

combinations, i.e., pi={(vI, tI) | I = 0,1, 2..., costi)}, where costi represents the time cost required for the

agent ai to move from the starting point to the goal point.

When planning these paths, we must ensure that each agent’s chosen path satisfies Equations (1)–(3) to avoid

agents entering obstacle regions or having point conflicts or edge conflicts with other agents. Equation (1)

indicates that at any time point tI, no two agents can occupy the same node (point conflict). Equation (2)

indicates that at any time point tI, no two agents can traverse the same edge at the same time (edge conflict).

Equation (3) requires that each node vI in the path does not belong to the obstacle region to avoid collision.

By satisfying these conditions, we can ensure that all agents can move safely and efficiently from their

respective starting points to the goal point while avoiding any collision.

6

∑

s.t. pi∩pj= ∅ i, j ∈ [1, Nrobot

(1)

{vI = vJ−1} ∩

vJ = vI−1} = ∅, vI ∈ pi, vJ ∈ pj I ∈ [0, costi], J ∈

0,

costj

(2)

vI ∈/ obstacles vI ∈ pi, I ∈ [0, costi] (3)

The optimization objective of the MAPF problem, as shown in Equation

(4), is to minimize the total cost (f lowtime), which is the sum of the time

steps required for each agent to complete its respective task. When agents

require little or no waiting, the flowtime value can effectively reflect the quality

of the solution.

f lowtime = min

k·Ngr

oup

costj

+

Ngr

oup

∑

costi} (4)

 j=1 i=1

7

 leng

th

=49 g1 s5

 g2

 s4

 g5

 s2

 s3

 g4

 s1 g3

Figure 3. Schematic diagram of the MAPF problem.

2.1. Co-MAPF Description

2.1.1. Co-MAPF Definition

Co-MAPF Problem Definition: In the context of MAPF, the agents in the agent set C = {Ci|0 <

i ≤ Ngroup} work together to accomplish the tasks tasksi within their respective collaborative groups

through a k-to-1 collaboration model. Each collaborative group Ci consists of k sub-tasking agents

and 1 task-executing agent, i.e., Ci = {((aj1, aj2..., ajk), bj)}, where (aj1, aj2..., ajk) represents the k sub-

task agents and bj represents the task execution agent. The collaborative task taski = {(τ1, τ2..., τk), g},

where (τ1, τ2..., τk) is the starting point of each sub-task agent and g is the common task goal point.

Taking collaborative distribution as an example, the sub-task agents start from the initial position

si, arrive at the corresponding sub-task position τi to obtain the goods and then arrive at the meeting

point mi to carry out the handover of the goods with the task execution agents. After all the sub-task

agents complete the handover of the goods, the task execution agent delivers these goods to the final

goal point g.

For the Co-MAPF problem, the core of the solution lies in planning collision-free paths for sub-task

and task-executing agents under the constraints of the MAPF. Considering the difference between the Co-

8

∑

MAPF problem and the general MAPF problem regarding agent behavior during task execution, the task-

executing agents need to reach the task handover location and complete the task handover with the sub-

task agents before moving to the goal location. Using f lowtime as the optimization objective poses the

following issues: First, all permutations and combinations of task handover locations and handover times

lead to the need to consume a large amount of computational resources to obtain the least time-costly task

meeting point, which makes it difficult to provide timely and effective solutions in complex scenarios.

Furthermore, optimizing with f lowtime as the objective tends to result in longer paths, higher energy

consumption, and reduced task volume due to frequent charging, ultimately impacting overall efficiency.

Therefore, this paper adopts the total path length (length) as the primary optimization objective, as shown

in Equation (5) (pathlengthi is the path of agent i), aiming to find a solution with a shorter total length of

paths for all agents. This approach aims to reduce energy consumption during actual execution and

enhance the system’s overall efficiency.

length = min

k·

Ngro

up

pathlengt

hj +

N

g

r

o

u

p

∑

pathlengthi } (5)

 j=1 i=1

9

s1

τ3

ifferent colored lines

ith arrows indicate th

aths of different robot

s3

s p

s

e

D
w

τ4 s4

s2

m

τ2

τ1

g =47 length

2.1.2. Two Forms of Collaborative Task Handover

When addressing the Co-MAPF problem, the variability of task handover locations and the

number of these locations (meeting points) significantly impact the planning outcomes. Therefore,

selecting an appropriate strategy to determine the optimal number of meeting points is crucial for

obtaining high-quality solutions.

As shown in Figure 4, when adopting the collaboration form with a single meeting point, each set

of cooperative task agents must reach a unique meeting point for their group to perform task

handovers. This handover form is simple and direct, requires few computational resources, and can be

solved using the Cooperative Dynamic Priority SIPP with a single meeting point (Co-DPSIPPs)

algorithm.

Figure 4. Collaborative form of single-meeting-point (Co-DPSIPPs).

However, using a single meeting point for all task handovers can result in some sub- task agents needing

to carry tasks and travel longer distances to reach point m, where the tasks are then transferred to the final

destination point g, generating longer redundant paths. Therefore, a better solution can be obtained by

adopting the collaboration form with multiple meeting points for task handovers, as illustrated in Figure

5. Naturally, the computational process for multiple meeting points is more complex than for a single one.

This problem can be solved using the Cooperative Dynamic Priority SIPP with multiple meeting points

(Co-DPSIPPm) algorithm.

Considering the characteristics of single-meeting-point and multi-meeting-point solv- ing modes, this paper

proposes a Cooperative Dynamic Priority SIPP with a multi-meeting- point and single-meeting-point

solving mode switching (Co-DPSIPPms) algorithm. The algorithm combines the advantages of both multi-

meeting-point and single-meeting-point solving modes, allowing the algorithm to switch to single-

meeting-point solving mode.

10

length=39 g

τ1 s1

τ2

m4

m3

s2

m2 s4 τ4

m1 τ3

Different colored lines

with arrows indicate the

paths of different robots

s s3

when the multi-meeting-point solving mode is in trouble. This approach enhances the algorithm’s success

rate and meets the demands of complex collaborative tasks.

Figure 5. Collaborative form of multi-meeting-point (Co-DPSIPPm).

3. Co-DPSIPPms Algorithm

Given the NP-hard nature of the Co-MAPF problem [42], producing effective paths within a

limited time frame is often challenging using optimal algorithms directly in complex environments.

Consequently, researchers have shifted their focus to exploring suboptimal algorithms [16,19–21], aiming

to obtain suboptimal solutions that meet system requirements rapidly. Building upon SIPP as the

fundamental path-planning strategy, this paper innovatively proposes a suboptimal path-planning algorithm

that achieves efficient collaboration at multiple or single meeting points, thereby swiftly outputting

optimized path solutions.

Multiple Meeting Points Solution Method Considering Obstacles

In the research methodology of this paper, whether it is solving for a single meeting point or a

meeting point within a specific subgroup of multiple meeting points, we utilize the principle of the

Fermat point to determine an initial meeting point m0 to narrow the search space and then quickly locate

the final meeting point m through a grid search in the neighborhood of m0. We refer to this method as the

improved Fermat point method. The core idea of the Fermat point principle is to find a point that

minimizes the sum of the distances to N known coordinate points; this point is the Fermat point, as

shown in Equation (6):

11

min∑ d

N

= ∑

i=

1

q
(x0

−

xi)

2

+ (y0 − yi

)

2
 (6)

12

0 =

As shown in Figure 6, to obtain the meeting point m with the shortest total

path length, we first input all relevant task coordinate points and quickly calculate

an initial reference task intersection point m0 using the Fermat point method.

Subsequently, we invoke the underlying path-planning algorithm to plan the paths

from all involved task coordinate points to m0 and calculate the total length of

these paths, denoted as Length0, which serves as the reference path length value.

Then, we further plan the paths from these task coordinate points to all

neighboring grid cells vi of m0 and compute the corresponding total path length

Lengthvi. As shown in Equation (7), if Lengthvi ≤ Length0, we set m0 = vi and

Length0 = Lengthvi. This process is repeated until all Lengthvi > Length0,

at which

point we set m = m0. Ultimately, we utilize the improved Fermat point method

to obtain the task-meeting point m with the shortest total path length.

m
vi ∃ Lengthvi ≤

Length0 m0 ∀

Lengthvi > Length0

(7)

Figure 6. Improved Fermat point method for obtaining single or specific subgroup meeting points.

Initial intersection (m0) obtained
according to the Fermat point principle s

Task execution

agent path

m

m0 Subtask
agent paths

g
τi

The final meeting point

（m） obtained by
diffusion search on m0

13

1 ds f + dg f > dsg and ds f < dg f

The solution may involve determining multiple meeting points in collaboration

with multiple meeting points. In this case, we implement different strategies

based on the number of agents within the cooperative group. When the

number of agents in a single cooperative group n = 2 and the number of

meeting points Nm = 1, then the determination of the meeting point is similar to

that shown in Figure 6, using the improved Fermat point method directly.

However, when the number of collaborative agents in a single group n > 2, the

number of convergence points Nm ∈ [1, n − 1] and the number of agents in a

single collaborative group n is determined by a combination of factors such as

the task size, the scenario, and the map size. We need to follow these steps to

solve multiple meeting points:

(1) First, we collect the position information of each sub-task starting

point τi, the starting point s of the execution agent, and the task destination

point g.

(2) Next, we connect the starting point s of the execution agent and the task

destination point g to form the line segment Lsg. Then, we calculate the foot of

the perpendicular from each sub-task starting point τi to the line segment Lsg,

denoted as fci. As shown in Equation (8), based on the relative position of the

horizontal coordinate of the foot of the perpendicular fci to the line segment

Lsg, we divide the corresponding sub-tasks into three parts: pre-segment, intra-

segment, and post-segment. In Equation (8), ds f is the distance between point

s and point f . Notably, in the particular case where the line segment Lsg is

vertical, the division into three parts is based on the relative position of the

vertical coordinate of the foot of the perpendicular fci to the line segment Lsg.

Tpart = 2 ds f + dg f = dsg

3 ds f + dg f < dsg and ds f >

dg f

(8)

(3) For sub-task points of the pre-segment, we input their coordinates together

with the starting point s of the execution agent and use the improved Fermat

point method to solve for the nearest meeting point ps, as shown in the green box

on the left side of Figure 7.

14

Figure 7. Schematic diagram of solving multiple meeting points within a

collaborative group.

(4) For the sub-task points of the post-segment, we input their coordinates

together with the task destination point g and utilize the improved Fermat

point method to solve for the nearest meeting point pg to these points, as

illustrated in the blue box on the right side of Figure 7.

(5) The process for determining the meeting points of the intra-segment is

relatively complex. First, we sort the horizontal coordinates of the feet of the

perpendiculars cor- responding to the sub-task points (τ0i) within the segment

in ascending order using the bubble sort algorithm, ensuring that the feet

closer to point s are ranked higher. This gives us an initial priority order for the

agents within the segment. Subsequently, we adjust the starting order of the

sub-task agents according to this priority order to accurately determine the

meeting points in subsequent calculations.

(6) After ordering adjustment, the sub-task points need to be paired into q

subgroups. As shown in Equation (9), if the number of sub-task points (Nτ0) is

odd, and a post-segment meeting point pg exists, we place the last sub-task points

τ0k and pg into the last subgroup (SGq). If pg does not exist, we place τ0k and

the task destination point g into a subgroup.

mi

ps

s

Lines of the same color with

arrows indicate the positional

points involved in solving for the

corresponding confluences

g

τi

2.intra-segment

fci

1.pre-segment 3.post-segment

pg

15

q =

 }

SG
τ0k, pg Nτ0 /2 = 1 and pg Exist =

True

{τ0k, g} Nτ0 /2 = 1 and pg Exist =

False

(9)

(7) After sequencing adjustment, the first sub-task point in the ith

subgroup within the same time segment is denoted as τi1. As shown in Figure

8, we use ps or s (if ps does not exist) to determine the first meeting point m11 of

the first subgroup within the segment. Then, using m11, τ11, and τ12, we calculate

the second meeting point m12 of this subgroup. Following the same principle, we

compute the two meeting points mi1 and mi2 for each remaining subgroup within

the segment. If the second coordinate of the last subgroup is pg or g, then the

meeting point is mq2 = pg or mq2 = g, respectively. Otherwise, mq2 is calculated

using pg or g (if pg does not exist) along with τq1 and τq2. Finally, all the computed

meeting points within the segment are stored in the meeting point list TaskL.

(8) After solving all subgroup meeting points, if ps and pg exist, they are

inserted at the beginning and end of TaskL, respectively. Subsequently, the

task goal point g is added to the end of TaskL. Finally, the ith meeting point in

TaskL is defined as mi, which is used in subsequent segmented path planning.

16

 Subgroup 1 Subgroup 2 Subgroup 3

s/ps τ1 τ2

 m01 τ2 τ3

 m02 τ3 τ4

 m03 τ5 τ6

 m04 τ6 τ7

 m05

⋯ ⋯ ⋯

Figure 8. Schematic diagram of the meeting points of subgroups solved within

the segment (Squares of the same color indicate the three coordinate points

that need to be involved in solving a conflu- ence mi).

Several vital points need to be explained here: First, during the solving

process for the meeting points, we do not directly involve the starting point si

of the sub-task agent, as the path from si to the sub-task starting point τi can be

planned directly and independently of the meeting points. Second, the pre-

segment, intra-segment, and post- segment categorization of sub-task points,

along with the priority adjustment of intra- segment sub-task points, ensures that

the task-executing agent can perform task handovers with sub-task agents from

nearby to far, minimizing redundant paths. Finally, as depicted in Figures 8 and

9, each subgroup is designed with two meeting points, and the meeting points of

the preceding subgroup directly participate in the calculations of the subsequent

subgroup, enhancing interconnectivity, shortening path lengths, and improving

efficiency and performance.

17

τ τ2
2

mi–1 τ 1 τ3

mi−1

mi
single meeting positon

τ1

mi

two meeting position

τ3

m i−1
m i

τ2

d1
mi−1 m

τ2

i

g g

τ1 τ1

single meeting positon two meeting position

Figure 9. Comparison of task handover within a subgroup at one or two

merging locations (Lines of the same color with arrows indicate the positional

points involved in solving for the correspond- ing confluences).

3.1. Segmented Path Planning Strategy

As illustrated in Figure 10, to ensure that each group of collaborative agents

efficiently and accurately completes task handovers at their respective meeting

points, we implement segmented path-planning strategies explicitly tailored for

sub-task agents and task execu- tion agents in terms of setting and planning

goal points in the following way. During the prioritization process of planning

collaborative task handover paths for sub-task agents, once a sub-task agent

reaches its initial goal point (i.e., the starting point of the sub-task,

18

i=1

1

t1

t06

m6
t6 t05

5 t04

m4
t4

m s

t m5

t03

t7 τi
3

t3m
g t02

t2

m2

m7

si

Path of the task

execution robot

Paths for

subtask agents

τi), its goal point is immediately updated to the corresponding final goal point

(i.e., the meeting point, mi).

Figure 10. Schematic diagram of segmented path planning for a collaborative

task handover agent.

After completing the segmented path planning for each sub-task agent within

the collaborative group, it is necessary to compile the arrival time t0i (Equation

(10)) of the last agent to reach each meeting point, which will then be utilized in

the planning process for the task execution agent.

toi = max
n
∑

Nτ0 πi

,
(10)

The complexity of planning collaborative task handover paths for the task

execution agent escalates due to the interplay of multiple meeting points. To

ensure a smooth transition of tasks, we must factor in the latest arrival time t0i

recorded in (1) for sub-task agents at their respective meeting points. As the

task execution agent plans routes to these meeting points mi, it compares its

estimated arrival time ti with t0i. As shown in Equation (11), if ti is greater than or

equal to t0i, indicating that all sub-task agents have arrived, the task execution

agent will wait for one time step to facilitate the task handover with the arrived

sub-task agents, followed by replacing its goal point. Conversely, if ti is less

than t0i, signifying that the task execution agent has reached the meeting

point ahead of the sub-task agents, it will execute a waiting operation until ti

equals t0i+1 before proceeding with the goal point replacement.

19

wait =

 t
1 ti ≥ t0i

ti − t0i + 1 ti < t0i

(11)

By adopting this clear and well-defined segmented path planning strategy,

we ensure the orderliness and efficiency of the collaborative agents during

task execution, thereby minimizing confusion and delays in the task handover

process.

3.2. Hybrid Solution Mode Switching Mechanism

When utilizing a collaborative path planning approach with multiple

meeting points, while it can offer optimization in path length, in certain

specific scenarios, the numerous and dispersed handover points within the

movement-constrained areas of the map can make it exceedingly challenging,

if not impossible, to identify and reach these meeting points, potentially

leading to solution failure. In such cases, the more straightforward and more

direct approach of solving for a single meeting point may paradoxically have

a greater chance of successfully finding a solution. Consequently, this paper

proposes an intelligent switching strategy that integrates both the multi-

meeting-point and single- meeting-point solving modes. The aim is to

prioritize ensuring the algorithm’s success

20

Multi-meeting-point

solving model (c=0)
Start

=

rate while also optimizing the path length. As depicted in Equation (12) and

Figure 11, the algorithm initially attempts to solve problems using the multi-

meeting-point solving mode (MMP). If the solving time in this mode t ≥

1/6·T0 and the number of solving failures in the multi-meeting-point solving

mode c ≥ 1, the algorithm automatically switches to the single-meeting-point

solving mode (SMP). Even in this simplified mode, if the solution remains

elusive, the algorithm continues to seek a solution by adjusting the group

priorities. The solution complexity is higher in the multi-meeting-point solving

model because a collaborative group needs to solve for multiple meeting

locations. In contrast, a collaborative group only needs to solve for one meeting

location in the single-meeting-point solving model, which has a lower solution

complexity in comparison. However, the path solution obtained by all agents

performing task handover at a single meeting point produces redundant paths that

are longer and consume more energy to move than performing task handover at

multiple meeting points. Therefore, the multi-meeting-point solving model is

preferred for solving when conditions allow one to obtain a better path

scheme.

MD
MMP t < 1/6·T0 or c < 1

SMP t ≥ 1/6·T0 and c ≥

1

(12)

successful

Figure 11. Schematic diagram of switching between multi-meeting-point

and single-meeting-point solving modes.

t < 1/6·T0

failed Group priority

adjustment

t ≥ 1/6·T0

and c≥ 1 c+=1

failed
successful Returns a path

solution

Single-meeting-point

solving model

Group priority

adjustment

21

In addition, two prioritization methods are used in this paper to obtain better

optimal solutions and higher success rates. In the multi-meeting-point solving

mode, the algorithm performs priority adjustments within individual

collaborative groups to ensure the task execution agent can hand over tasks

with sub-task agents in an optimal sequence, thereby reducing unnecessary

path redundancy. For the entire multi-agent system, priority ad- justments

focus on the entire group, aiming to enhance the success rate of the solution by

optimizing interactions between groups. The group prioritization adjustment

method is shown in Equation (13), where PGi is the group priority of groupi

and PGF is the priority of the group where the solution failed:

PGi =

1 PGi =

PGF i + 1 PGi

< PGF

i PGi >

PGF

(13)

3.3. Pseudocode and Flowchart of the Co-DPSIPPms Algorithm

The pseudocodes for the Co-DPSIPPms algorithm are presented in Algorithms

1 and 2. Algorithm 1 is the planning system’s upper layer and is responsible for

priority adjustments, solving mode switching, and safety interval updates.

Algorithm 2, conversely, constitutes

22

the lower layer of the planning system, tasked with segmenting and planning

collision-free paths for individual agents.

Algorithm 1: Co-DPSIPPms algorithm

input: Group = {. . . , groupi = (agentsa, agentb, taski), . . .}, Map, T0,

MD = MMP

%MD = MMP, initial use of multi-meeting-point solving mode

output: Paths, length

1: while t < T0 do

2: for groupi in Group do

3: if MD=MMP then

4: newGoal ← Mi1←CalMultipleMeetingPoints(groupi)

%Solving for multiple meeting points

5: end if

6: if MD = SMP then

7: newGoal ← Mi2←CalSingleMeetingPoint(groupi)

%Solving for single meeting point

8: end if

9: for agent in groupi do

10: res, pathi ←iSIPP(agent, id, Map, newGoal)

11: if res = success f ul then

12: pathi insert Paths, update Sa f eInterval

%Update safe intervals to avoid future conflicts

13: end if

14: if res = f ailed then

15: if MD = MMP and t ≥ 1/6·T0 then

16: MD = MSP

17: end if

18: newGroup←DeterReScheduling(groupi , Group)

%Set the priority of failed groups to the highest

19: Group←newGroup

20: Paths←∅ ,Sa f e_interval←InitialSa f eInterval

23

21: end if

22: end for

23: end for

24: return Paths, length

25: end while

26: return , ∅ , 0

Algorithm 2: iSIPP algorithm

input: agent, id, Map, newGoal,Replaced=False

output: path

1: while curNode /= agentGoal do

2: expand nodes

using A* 3: if OPEN

= ∅ then

4: return f ailed, ∅

5: end if

6: if not Replaced then

7: if curNode = agentGoal then

8: if agent is agentb then

9: Perform the wait operation according to Equation (11)

10: end if

11: agentGoal = newGoalid

%A unvisited meeting location as new

goal point 12: if newGoalid is agentFinalGoal

then

13: Replaced = True %Plan to the ultimate goal

24

Algorithm 2: iSIPP

algorithm 14: end if

15: end if

16: end if

17: if Replaced then

18: if curNode = agentGoal

then 19: return success f

ul, path 20: end if

21: end if

22: end while

Figure 12 details the complete flow of the Co-DPSIPPms algorithm, which comprises

six crucial components: meeting point solving, segmented path planning, global

safety interval updating, switching between multi-meeting-point and single-

meeting-point solving modes, and group priority adjustments. These components

work in concert to ensure that the algorithm can optimize the path length and

efficiency of task execution while guaranteeing a high success rate of the

solution.

25

start

Input map, task, and set solution parameters

N
t< T0 ?

Y

Solve in order of group priority

Solution

solving

failed Multi-Meeting-point solving

mode?

N

Dynamic

adjustment of

group priority

Update global

safe interval list

based on path

Y

Solve the planning sequence of

multiple meeting points and
Solving single

robots within collaborative groups
meeting point

Y

Switch to single-

meeting-point

solving mode

Is the robot planning

successful?

N

N All collaboration groups

successfully planned?
t ≥ 1/6·T0 and MD=MMP? Y

Y N

Solve the conflict free paths of each

robot sequentially within the

collaborative group, considering

midway task handover

Return a path solution

Figure 12. Flow chart of the Co-DPSIPPms algorithm.

In the Co-DPSIPPms algorithm, the majority of the computation time is focused on solving

for the meeting points. When Ngroup collaborative groups are operating simulta- neously, with

each group containing n agents and each group requiring k meeting points for task handovers, the

solution for each meeting point involves r iterations of the search. Under this scenario, the

underlying single-agent path planning algorithm will be invoked

26

i=0

k·r·n·Ngroup times during the process of solving for the meeting points. As a result, the time

complexity of solving all meeting points can be expressed as follows:

n

O(Time) = k·r·Ngroup ∑ O(b)
Ti

i=0

(14)

In Equation (14), b represents the number of states that the algorithm can expand outward

during the node expansion process, Ti denotes the length of the path for a sin-

gle agent (as a measure of path search complexity), and ∑
n
 O(b)

Ti
 represents the

time

complexity of formally planning the path once all goal points are known. Due to the need to

repeatedly invoke the underlying path planning algorithm while solving for meeting points, the

time complexity of this part is almost k·r·Ngroup times that of formally planning the path. These data

show a significant increase in the computational complexity of the

Collaborative Multi-Agent Path Finding problem (Co-MAPF) compared to the classical MAPF

problem. This increase is primarily attributed to the additional computations and iterative

searches introduced by solving for meeting points.

4. Simulation Experimental Analysis

4.1. Experimental Parameter Settings

This paper compares the performances of the different collaborative agent path- planning

algorithms through three simulation experiments. Simulation Experiment 1 primarily focuses on

the performance of the Co-CBS algorithm and the Co-DPSIPPms algorithm in scenarios where

only two agents collaborate. Simulation Experiment 2 pro- vides a more comprehensive evaluation

of three algorithms: Cooperative Dynamic Priority SIPP with a single meeting point (Co-

DPSIPPs), Cooperative Dynamic Priority SIPP with multiple meeting points (Co-DPSIPPm), and

Cooperative Dynamic Priority SIPP with multi-meeting-point and single-meeting-point solving

mode switching (Co-DPSIPPms). Additionally, Simulation Experiment 3 exemplifies the impact

of the number of agents within a single collaborative group on the solution results of both the

Co-DPSIPPs and Co-DPSIPPms algorithms.

The experiments were conducted on a Windows 10 PC with an Intel Core i7 (3.6 GHz) CPU and

32 GB of RAM, and the algorithms ran on an Ubuntu 20.04 environment installed on a VMware17

virtual machine to ensure a fair comparison on a unified platform. In order to evaluate the

algorithm’s solution efficiency, we set each planning limit time T0 to 5 min. If an algorithm failed

27

to return a valid solution within this time, the corresponding instance was considered a failure.

The experimental maps included standard Nest, Empty, Maze, and Warehouse maps, as

shown in Figure 13, simulating environments of varying complexity. For experiments involving

n agents within a single collaborative task, we utilized the n sets of coordinates from the instance

files (i.e., Scenarios files) accompanying the standard maps to set the starting positions of the

agents, sub-task starting points, and task goal points. The starting point and goal point of the first

sub-task correspond to the starting and goal points of the first set of coordinates, the starting

point of the first sub-task agent and the starting point of the task execution agent correspond to

the starting and goal points of the second set of coordinates, and the starting points of the

remaining n-2 sub-task agents and sub- task starting points correspond to the starting and goal

points of the remaining n-2 sets of coordinates.

In Simulation Experiment 1, we set the number of agents within a single collaborative group to

n = 2. We gradually increased the number of collaborative task groups Ngroup from 6 to 30 to

evaluate the performance of the algorithms under different collaboration group sizes. In

Simulation Experiment 2, we fixed the number of agents within a single collaborative group to n

= 10. We incrementally increased the number of collaborative task groups Ngroup from 1 to 5 to

analyze the performance of the algorithms in multi-group collaboration scenarios. To further

explore the impact of the number of agents within a

28

single collaborative group on the experimental results, we conducted an additional set of

experiments where Ngroup=1, and the number of agents within a single collaborative group n was

gradually increased from 5 to 25. Each experiment was repeated 5 times, with each test comprising

25 instances, to ensure the reliability and stability of the results. The runtime metric represents the

time the algorithm takes to return a valid solution during the solution process, reflecting the

algorithm’s solution efficiency. When comparing runtime, total path length (length), and total

path cost (f lowtime), we took the average values of public solutions as the basis for comparison

to more accurately assess the merits of the algorithms. Additionally, we bolded the best-

performing data among several algorithms for a more intuitive comparison.

(a) den312d (b) empty-48-48

(c) maze-32-32-4 (d) warehouse-10-20-10-2-1

Figure 13. Nest, Empty, Maze, and Warehouse benchmark maps.

In Figure 14, we present the multi-agent path planning algorithm’s

planned paths utilizing multiple and single-meeting-point collaboration

29

formats, and a line of one color denotes a robot’s path. Figure 14a,b

corresponds to these two collaboration formats, respectively, involving 9 sub-

task agents and 1 task execution agent working together to complete tasks. In

the figures, the green circles represent the starting points of the task execution

agent, the red rectangles mark the task goal points, and the red five-pointed

stars indicate the meeting points calculated by the algorithm. It is evident from

the figures that the path in the single meeting-point-collaboration format tends

to converge toward a single handover point, leading to longer redundant

segments in the path. In contrast, the path in the multi-meeting-point

collaboration format allows for task handovers at multiple different handover

points, enabling more flexible path planning and significantly reducing the

length of redundant paths. This optimization not only improves the overall

30

task execution efficiency but also decreases the energy consumption of

agents during task execution.

(a) Single meeting point (9-to-1) (b) Multiple meeting points (9-to-1)

Figure 14. Path diagram of a single group collaborative task (n = 10).

4.2. Simulation Experiment 1

Figure 15 and Table 1 present a comparative analysis of the test results

between the Co-CBS algorithm and the Co-DPSIPPms algorithm when only

two agents collaborate. In the 1-to-1 collaboration scenario, as depicted in

Figure 15, the Co-DPSIPPms algorithm demonstrates significant advantages

over the Co-CBS algorithm, particularly regarding the solution success rate.

Specifically, across four different maps (Nest, Empty, Maze, and Warehouse),

the solution success rate of Co-DPSIPPms improved by 60%, 53.6%, 19.2%,

and 24%, respectively, showing remarkable superiority. Furthermore, by

comparing the maximum number of solvable collaboration task groups

between the two algorithms, we found that Co-DPSIPPms was able to solve

more collaboration task groups on all four maps. Notably, on the Nest and

Maze maps, the number of solvable collaboration task groups achieved by

Co-DPSIPPms was more than twice that by Co-CBS. In summary, the Co-

DPSIPPms algorithm boasts a higher solution success rate and handles more

collaboration task groups and agent instances on these four maps,

demonstrating more robust solving capabilities and adaptability.

31

Table 1. Comparison of path solutions between Co-CBS and Co-DPSIPPms

algorithms in 1-to-1 collaboration.

Map

 Ngro

up

Length/Step Flowtime/Step Runtime/s

Note: The data marked in bold are the best performing data from the results of the comparison algorithm.

 Co-DPSIPPms Co-CBS Co-DPSIPPms Co-CBS Co-DPSIPPms Co-CBS

den312d 6 768.8 893.9 1014.2 972.7 16.12 43.42

 6 467.88 536.12 665.52 592 4.63 8.47
empty-48-48 12 950.72 1089.94 1253.72 1194.44 17.68 22.29

 18 1426.6 1607.8 1912.2 1777.2 54.29 128.65

maze-32-32-4 6 620.75 636.25 786.5 729.75 28.91 46.89

warehouse- 6 1254.4 1396.93 1630.86 1540.2 10.34 70.71

10-20-10-2-1 12 2379.33 2598.33 3096 2847.33 26.38 156.83

32

100 100
96

Co-CBS

Co-DPSIPPms

40
36

0 0 0

8

0

68 Co-CBS

Co-DPSIPPms

36

28

16

0 0
4
0 0

S
u

c
c
e
ss

 r
a
te

%

S
u

c
c
e
ss

 r
a
te

%

100 100

80 80

60 60

40 40

20 20

0

0 6 12 18 24 30

Number of collaborative task

groups

0

0 6 12 18 24 30

Number of collaborative task groups

(a) den312d (b) empty-48-48

70
80

60

50 60

40

40

30

20 20

10

0
0

0 6 12 18 24 30

Number of collaborative task

groups

5 10 15 20 25 30

Number of collaborative task group

100 100 100

92

72
68

Co-CBS

Co-DPSIPPms

20

0 0

80
Co-CBS

Co-DPSIPPms

60

52

32

20

4
0 0

S
u

c
c
e
ss

 r
a
te

%

S
u

c
c
e
ss

 r
a
te

%

33

(c) maze-32-32-4 (d) warehouse-10-20-10-2-1

Figure 15. The success rates of the Co-CBS and Co-DPSIPPms algorithms in

the 1-to-1 collaboration.

Table 1 reveals that the Co-DPSIPPms algorithm exhibits significant

advantages over the Co-CBS algorithm regarding the total path length and algorithm solving

time. Specif- ically, on the Nest, Empty, Maze, and Warehouse maps, the path solutions

generated by Co-DPSIPPms are 13.9%, 12.2%, 2.4%, and 9.3% shorter in total path length,

respectively, than those generated by Co-CBS. Concurrently, the solving times are reduced

by 62.8%, 41.3%, 38.3%, and 84.2%, respectively. These results imply that the Co-

DPSIPPms algo- rithm can find path solutions in a much shorter time in addition to maze

maps, and the obtained path solutions are able to reduce energy consumption by about 10%

compared to the Co-CBS algorithm, which is an essential economic and environmental

benefit in practical applications.

However, regarding the total path cost, the Co-DPSIPPms algorithm is

inferior to the Co-CBS algorithm. This is primarily due to the optimization objective of the Co-

DPSIPPms algorithm, which focuses on minimizing the total path length. In some scenarios, to

avoid unnecessary energy consumption, the task execution agent may need to wait at the meeting

point for the sub-task agents to arrive for task handover, resulting in a higher path cost than

the Co-CBS algorithm. Nevertheless, considering the significant advantages of the Co-

DPSIPPms algorithm in terms of path length and solving time, it holds a high application value

and potential in multi-agent cooperative path planning.

Table 2. Path solution comparison of the Co-DPSIPPs and Co-DPSIPPms

algorithms in the 9-to-1 collaboration.

Map

 Ngro

up

Length/Step Flowtime/Step Runtim
 Co-DPSIPPms Co-DPSIPPs Co-DPSIPPms Co-DPSIPPs Co-DPSIPPms Co-DPSIPPm

1 760.38 806 852.84 929 21.18 7.86
2 1433.6 1638.6 1594.4 1860.6 121.37 73.37

den312d 3 2262 2446 2567.5 2765.5 157.45 103.88
4 2702 3307.5 2920.25 3793.25 233.2 283.64
5 3190 4083 3433 4613 241.32 300

1 454.25 495.85 506.15 565.85 2.64 3.05
2 855.66 1014.44 922.16 1153.33 35.71 26.92

empty-48-48 3 1253.53 1537.33 1363.6 1757.93 39.85 84.91
4 1653 2076.63 1770.63 2356.81 116.41 213.75
5 2108.1 2607.44 2284.67 2951.22 213.45 293.93

1 604.9 637.7 727 757.8 19.76 8.92
maze-32-32-4

2
 1213.75 1404.87 1427 1695.87 42.35 25.61

3 1797.5 2087.5 2152.5 2631.5 80.04 50.82
4 2612.66 2808 3475.66 3812 149.02 92.46

1 951.3 1113.95 1035.08 1268.91 7.94 4.49
warehouse-

2
 2185.68 2526.36 2373.89 2860.26 65.34 74.71

10-20-10-2-1
3

 3689.61 3813.53 4154.53 4295.53 131.82 118.85
4 5373.2 5523.2 5984 6185.4 212.97 167.66
5 6632.66 7100.66 7451 7969 259.82 229.61

34

Note: The data marked in bold are the best performing data from the results of the comparison algorithm.

Furthermore, the data in Table 2 reinforce the superiority of the Co-DPSIPPms algo- rithm in

path planning. Regarding the average total path length, Co-DPSIPPms achieves reductions of 13.14%,

16.34%, 10.5%, and 8.12% compared to Co-DPSIPPs across the four maps. This significant

improvement is attributed to the ability of the Co-DPSIPPms algo- rithm to guide the sub-task agents

and task execution agents to select more suitable locations on the map for task handover, effectively

reducing redundant paths. Co-DPSIPPms not only decreases the energy consumption of the agentic

system but also saves operational costs. The Co-DPSIPPms algorithm also demonstrates a clear

advantage regarding the average to- tal path cost, reducing the total cost by 15.52%, 20.04%, 11.68%, and

9.68% on the four maps, respectively. Regarding algorithm runtime, on the relatively spacious Nest

and Empty maps, the Co-DPSIPPms algorithm, which switches between multiple-meeting-point and

single-meeting-point solving modes when Ngroup > 3, can return solutions faster. However, in complex

and narrow maps, such as Maze and Warehouse, the Co-DPSIPPs algorithm with a single-meeting-

point solving mode returns solutions more quickly.

From the above results, it is evident that the Co-DPSIPPms algorithm performs ex- ceptionally

well on the Nest, Empty, and Maze maps, while its advantage diminishes slightly on the Warehouse

map with severely restricted mobility. Compared to Co-DPSIPPs, Co-DPSIPPms significantly improves

the solution success rate, shortens the path length, and reduces the total path cost at the expense of a

slightly longer algorithm runtime.

5.3. Simulation Experiment 3

To further investigate the impact of increasing the number of cooperative agents on the performance

of the two algorithms, we conducted tests on an obstacle-free empty map, and the results are presented in

Figure 17.

By comparing instances where both Co-DPSIPPs and Co-DPSIPPms can find solutions in a single

run, we observed that as the number of agents in a single cooperative group increases, the Co-DPSIPPms

algorithm, which employs multiple meeting points, exhibits increasingly significant optimization effects

regarding path length and total path cost. This is because, as the number of agents in a single

cooperative group increases, the single-

meeting-point approach is more prone to generating redundant paths. In contrast, the Co-DPSIPPms

algorithm effectively reduces these redundancies through the multi-meeting- point approach. However,

when the number of agents reaches a certain threshold, the optimization effect tends to stabilize due to

the influence of other agents’ movements. This result indicates that within a certain range of the

number of single-group cooperative agents, the Co-DPSIPPms algorithm, which operates through the

collaboration of multiple meeting points, can achieve a better path solution by sacrificing a certain

amount of solution

35

5. Conclusions

Co-MAPF surpasses traditional MAPF in tackling tasks and significantly enhances system

efficiency in most cases. In this paper, we innovatively propose a multi-robot path- planning algorithm

to solve the problem of “many-to-one” collaborative robot tasks, which allows collaborative agents to

perform task handovers at multiple meeting points. This advancement effectively mitigates the issue of

excessively long redundant paths that occur during task handovers at a single meeting point. Furthermore,

we incorporate an automatic switching strategy between multi-meeting-point and single-meeting-point

solving modes to boost solution success rates. When the multi-meeting-point solving mode

encounters difficulties, the algorithm seamlessly transitions to the single-meeting-point solving mode,

ensuring a greater likelihood of successful solutions.

The simulation results unequivocally demonstrate the superiority of the proposed Cooperative

Dynamic Priority Safe Interval Path Planning with multi-meeting-point and single-meeting-point

solving mode switching (Co-DPSIPPms) algorithm. Compared to the Co-CBS algorithm, Co-

DPSIPPms achieves an average 39.20% increase in the solution success rate, a 9.45% reduction in

total path length, and a 56.65% decrease in the solution time. Compared to Co-DPSIPPs, the variant

with a single meeting point, Co-DPSIPPms, exhibits a 15.4% improvement in the solution success rate,

a 12.03% reduction in the total path length, and a 14.23% decrease in the total path cost. These findings

indicate that the Co- DPSIPPms algorithm significantly enhances solution success rates and shortens path

lengths. Notably, as the number of agents within a specific range increases, the optimization effects on

the total path length and cost become more pronounced, highlighting the scalability.

Efficiency of the proposed algorithm. Finally, the practicality and feasibility of the path planning

solution devised by our algorithm are further validated through the actual execution results of

CoCube agents.

In the future, we will focus on several core areas to deeply optimize algorithms, in- cluding

enhancing algorithm execution efficiency, improving the quality of path planning solutions, achieving

scientific and rational task allocation, and strengthening the collabora- tive working mechanism among

multiple agents. Our goal is to realize more efficient and superior path-planning solutions.

References

1. Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.; Walker, T.T.; Li, J.; Atzmon, D.; Cohen,

L.; Satish Kumar, T.K.; et al. Multi- agent pathfinding: Definitions, variants, and benchmarks. In

Proceedings of the International Symposium on Combinatorial Search, Napa, CA, USA, 16–17 July

2019; Volume 10, pp. 151–158.

2. Ren, Z.; Rathinam, S.; Choset, H. A conflict-based search framework for multiobjective multiagent

path finding. IEEE Trans. Autom. Sci. Eng. 2022, 20, 1262–1274. [CrossRef]

3. Ali, Z.A.; Yakovlev, K. Safe Interval Path Planning with Kinodynamic Constraints. In Proceedings

https://doi.org/10.1109/TASE.2022.3183183

36

of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023;

Volume 37, pp. 12330–12337.

4. Cohen, L.; Wagner, G.; Chan, D.; Choset, H.; Sturtevant, N.; Koenig, S.; Satish Kumar, T.K.

Rapid randomized restarts for multi-agent path finding solvers. In Proceedings of the International

Symposium on Combinatorial Search, Stockholm, Sweden, 14–15 July 2018; Volume 9, pp. 148–

152.

5. Lin, C.; Han, G.; Du, J.; Xu, T.; Lv, Z. Spatiotemporal congestion-aware path planning toward

intelligent transportation systems in software-defined smart city IoT. Internet Things J. 2020, 7,

8012–8024. [CrossRef]

6. Yu, C.; Jia-Qiang, E.; Hao, Z.; Yuan-Wang, D. Driving-Record-Based Distributed Path-Planning

for Autonomous Vehicle. In Proceedings of the International Conference on Intelligent

Transportation, Big Data and Smart City, Xi’an, China, 19–20 December 2015; pp. 320–323.

7. Sun, N.; Shi, H.; Han, G.; Wang, B.; Shu, L. Dynamic path planning algorithms with load balancing

based on data prediction for smart transportation systems. IEEE Access 2020, 8, 15907–15922.

[CrossRef]

8. Fu, X.; Li, C.; Hui, Y.; Hui, Y.; Yang, J. Space-Time Map Based Path Planning solution in Large-Scale

Intelligent Warehouse System. In Proceedings of the International Conference on Intelligent

Transportation Systems, Rhodes, Greece, 20–23 September 2020; pp. 1–6.

9. Shi, Y.; Hu, B.; Huang, R. Task allocation and path planning of many robots with motion uncertainty in

a warehouse environment. In Proceedings of the International Conference on Real-Time Computing

and Robotics, Xining, China, 15–19 July 2021; pp. 776–781.

10. Chen, X.; Li, Y.; Liu, L. A coordinated path planning algorithm for multi-robot in intelligent

warehouse. In Proceedings of the International Conference on Robotics and Biomimetics, Dali,

China, 6–8 December 2019; pp. 2945–2950.

11. Wen, H.; Lin, Y.; Wu, J.B. Co-evolutionary optimization algorithm based on the future traffic

environment for emergency rescue path planning. IEEE Access 2020, 8, 148125–148135.

[CrossRef]

12. Dresner, K.; Stone, P. A multiagent approach to autonomous handover point management. J. Artif.

Intell. Res. 2008, 31, 591–656.

[CrossRef]

13. Le, C.; Pham, H.X.; La, H.M. A Multi-Robotic System for Environmental Cleaning. arXiv 2018,

arXiv:1811.00690.

14. Phillips, M.; Likhachev, M. Sipp: Safe interval path planning for dynamic environments. In

Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai,

China, 9–13 May 2011; pp. 5628–5635.

15. Silver, D. Cooperative pathfinding. In Proceedings of the AAAI Conference on Artificial

https://doi.org/10.1109/JIOT.2020.2994963
https://doi.org/10.1109/ACCESS.2020.2966995
https://doi.org/10.1109/ACCESS.2020.3014609
https://doi.org/10.1613/jair.2502

37

Intelligence and Interactive Digital Entertainment, Marina Del Rey, CA, USA, 1–3 June 2005;

Volume 1, pp. 117–122.

16. Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent

pathfinding. Artif. Intell. 2015,

219, 40–66. [CrossRef]

17. Wagner, G.; Choset, H. M*: A complete multirobot path planning algorithm with performance

bounds. In Proceedings of the International Conference on Intelligent Robots and Systems, San

Francisco, CA, USA, 25–30 September 2011; pp. 3260–3267.

18. Lan, X.; Lv, X.; Liu, W.; He, Y.; Zhang, X. Research on robot global path planning based on

improved A-star ant colony algorithm. In Proceedings of the 2021 IEEE 5th Advanced Information

Technology, Electronic and Automation Control Conference (IAEAC), Xi’an, China, 12–14 March

2021; Volume 5, pp. 613–617.

19. Narayanan, V.; Phillips, M.; Likhachev, M. Anytime safe interval path planning for dynamic

environments. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Algarve, Portugal, 7–12 October 2012; pp. 4708–4715.

20. Yakovlev, K.; Andreychuk, A.; Stern, R. Revisiting bounded-suboptimal safe interval path

planning. In Proceedings of the International Conference on Automated Planning and Scheduling,

Nancy, France, 26–30 October 2020; Volume 30, pp. 300–304.

21. Barer, M.; Sharon, G.; Stern, R.; Felner, A. Suboptimal variants of the conflict-based search

algorithm for the multi-agent pathfinding problem. In Proceedings of the International Symposium

on Combinatorial Search, Prague, Czech Republic, 15–17 August 2014; Volume 5, pp. 19–27.

22. Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel, O.; Tolpin, D.; Shimony, E. Icbs: The

improved conflict-based search algorithm for multi-agent path finding. In Proceedings of the

International Symposium on Combinatorial Search, Jerusalem, Israel, 11–13 June 2015; Volume 6,

pp. 223–225.

23. Li, J.; Ruml, W.; Koenig, S. EECBS: A bounded-suboptimal search for multi-agent path finding.

In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 2–9

February 2021; Volume 35, pp. 12353–12362.

24. Ma, H.; Li, J.; Kumar, T.K.; Koenig, S. Lifelong multi-agent path finding for online pickup and delivery

tasks. arXiv 2017, arXiv:1705.10868.

25. Greshler, N.; Gordon, O.; Salzman, O.; Shimkin, N. Cooperative multi-agent path finding: Beyond

path planning and collision avoidance. In Proceedings of the 2021 International Symposium on

Multi-Robot and Multi-Agent Systems (MRS), Cambridge, UK, 4–5 November 2021; pp. 20–28.

26. Sun, S.; Gu, C.; Wan, Q.; Huang, H.; Jia, X. CROTPN based collision-free and deadlock-free path

planning of AGVs in logistic center. In Proceedings of the 2018 15th International Conference on

https://doi.org/10.1016/j.artint.2014.11.006

38

Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp.

1685–1691.

27. Salzman, O.; Stern, R. Research challenges and opportunities in multi-agent path finding and multi-

agent pickup and delivery problems. In Proceedings of the 19th International Conference on

Autonomous Agents and MultiAgent Systems, Auckland, New Zealand, 9–13 May 2020; pp. 1711–

