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Abstract:  

For personalised health aids, monitoring human actions like walking, falling, and jumping yields important information. 

Current options use a high-definition camera to record video data, require the user to carry or wear specific smart gadgets, 

or deploy specialised equipment to collect wireless data. For various reasons, including pain, privacy, and overheads, none 

of these alternatives are, nevertheless, extensively used. Thus, there is a need for an efficient way to offer safe, affordable, 

and non-intrusive human activity monitoring. In this work, we designed a contactless human activity tracking system that 

makes use of the channel state information (CSI) of the current WiFi signals that are widely used. In particular, we utilised 

a desktop computer outfitted with an Intel WiFi Link 5300 NIC as the receiver and a cheap commercial off-the-shelf 

(COTS) router as the transmitter. 
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Introduction 

In the context of modern life, it is of significant value to conduct indoor human activity detection. First, it 

allows for the monitoring of an individual’s body posture and gait in real- time, which is beneficial from the 

perspective of health management for the early discovery of and protection from diseases due to sedentary 

behavior and unhealthy posture, among other aspects. Furthermore, human activity detection can reveal 

abnormal behaviors in a timely manner and reduce the incidence of accidents such as falling down for the 

elderly or people with limited mobility. In addition, indoor human activity detection also promotes the 

development of home automation with more personalized and intelligent services through intelligently 

recognizing and analyzing the activity habits of users. 

As early as 2005, Kushida et al.  employed polysomnography (PSG) for monitoring of the physical 

health of the human body [1,2]. However, polysomnography requires the user to wear dozens of sensors 



2 
 

and, consequently, is inapplicable for long and continuous human activity detection due to the high cost and 

invasiveness of the device. To overcome these limitations, researchers have attempted to employ built-in 

motion sensors (e.g., magnetometer, accelerometer, and gyroscope) in smartphones [3–5], smartwatches [6–

9], and/or wearable devices [10,11] to capture and record data reflecting changes in human movement, thus 

realizing long and continuous human activity detection. While these approaches are effective in reducing the 

cost of the device, they also require users to attach intrusive sensors to their body throughout the monitoring 

process, which poses unrealistic demands for groups such as the elderly,   children,   and others.   Wang et 

al.    proposed a solution to the intrusiveness problem in contact sensing methods through utilization of 

the built-in speakers and microphones of smart devices to send and receive sound signals, respectively, then 

analyzed and processed the collected audio data to obtain useful information about human activities [12–14]. 

However, audio-based sensing methods are not only susceptible to ambient noise but also raise privacy 

concerns. Meanwhile, extensive works have employed cameras to collect and record image/video data of 

human activities, then adopted methods based on computer vision to obtain information about human 

activities of interest [15–19]. Nevertheless, video-based sensing methods rely on light conditions and also 

pose privacy risks; furthermore, they cannot be applied in situations where the target is obscured by obstacles. 

With the development and innovation of wireless communication, human activity sensing based on radio 

frequency signals has attracted extensive attention, as it protects the privacy of the users while realizing 

contactless sensing. Specifically, sensing methods based on radar signals enable contactless and high-

accuracy monitoring of human activities such as respiration, heart rate, and gesture perception [20–26]. 

However, the methods mentioned above require specialized devices, and they are complicated to widely 

deploy due to high hardware costs and complexity of operation. Similarly, the Universal Software Radio 

Peripheral (USRP)-based sensing approach requires not only the deployment of specialized hardware 

devices but also the writing of complex hardware programs [27–29]. To address the limitations of a high 

hardware cost and operating difficulty, researchers have utilized RFID readers and tags as transceivers of 

wireless signals to realize contact- less human body activity monitoring [30–34]. However, RFID-based 

sensing approaches require deploying dozens or even hundreds of tags, which creates an extreme 

limitation in practical applications. Therefore, we sought a solution that is low-cost, contactless, and 

privacy-preserving, to provide long-term continuous human activity monitoring. We found that Channel 

State Information of the existing ubiquitous WiFi signals is a desirable candidate. The reason is that given the 

prevalence of WiFi infrastructures in office or home environments, it is possible to capture people’s activities 

without their participation [35]. 

Therefore, our study directly utilized the physical-layer attributes (i.e., CSI) of existing ubiquitous WiFi 

signals to obtain environmental information that is relevant to human activities, allowing for the construction 

of a low-cost, contactless, and privacy-preserving indoor human activity monitoring system. Briefly, we 

deployed and built WiFi sensing devices to collect and record WiFi CSI data reflecting changes in human 

activities. Then, we constructed a combined filtering channel to remove the outliers and ambient noise mixed 
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in the raw CSI data, to obtain fine-grained WiFi CSI signals. The different center frequencies of different CSI 

subcarriers result in different sensitivities of different CSI subcarriers to the same target action. Consequently, 

we constructed a novel sensitivity metric and selected an optimal set of subcarriers (i.e., top-ten subcarriers) 

from 30 candidate CSI subcarriers based on this metric. Eventually, we categorized the segmented CSI signals 

using a lightweight machine learning algorithm to implement accurate walking, falling, and jumping 

measurements. Compared to existing approaches, the advantages of the method proposed in this study are 

threefold: first, monitoring target human activities with CSI data based on WiFi signals is non-intrusive 

for the human body and protects the privacy of users better; second, using the existing WiFi routers and 

personal computers as the transmitters and receivers directly has a low cost and enables easy deployment; 

third, the strong penetration of WiFi signals can detect human activities in non-line-of-sight scenarios. 

In summary, this study makes the following main contributions: 

We propose a method for achieving contactless human activity sensing by utilizing ubiquitous WiFi 

signals, which is non-intrusive, low-cost, and secure for the user. 

 

We have designed a novel metric based on kurtosis and standard deviation to select an optimal subcarrier set that is 
sensitive to all target activities from the candidate 30 subcarriers. 

• We have implemented our system prototype with a COTS router and a desktop 
computer and conducted extensive experiments with 10 people over a period of one 
month. The results indicate the accuracy and robustness of our system. 

 

Preliminaries 

1.1. Channel State Information 

Channel state information (CSI) describes the transmission process of a WiFi signal from transmitter to receiver at a specific 
carrier frequency, involving the effects of distance, fading, and scattering on the WiFi signal 
propagation. For a WiFi sensing system, when the number of antennas of the WiFi receiver 

and transmitter are MR and MT, the WiFi reception signal can be represented as 
 

Ri = HiSi + Ni (1) 

where i is the index  of the OFDM subcarrier,  Si   ∈ RMT  is the WiFi transmitting  signal, Ri ∈ RMR is the WiFi reception 

signal, Ni is the noise vector, and Hi ∈ CMR ×MT is expressed as the CSI matrix of the OFDM 
subcarrier i; that is, 
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where hrt is denoted as the CSI value of the ith OFDM subcarrier in the communication link 
rt 

formed by receiving antenna r and transmitting antenna t, and hi is a complex number, which can be further represented as 

 

h rt = I rt + JQ rt = h rt e j∠hrt (3) 
i i i i 

where Qrt and I rt are the quadrature component and in-phase component; and   h rt 

∠hrt 
i i i 

 
and 

h h 
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i are the amplitude and phase response of the subcarrier i, respectively. We can use open-source testing tools to extract CSI 
data from the wireless card of a WiFi receiver [36]. 

The multipath propagation schematic of a WiFi signal in a human activity scenario is shown in Figure 1. Specifically, the WiFi 

signal received at the WiFi receiver is a combination of signals from different paths due to the multipath propagation effect 
of the WiFi signal, namely, the line-of-sight (LOS) path, the reflected path of a static object (i.e., the static path), and the 
reflected path of a human body’s activity (i.e., the dynamic path). Hence, the CSI measurements extracted from the WiFi 
receiver are affected by factors such as the transceiver position, static object reflection, and dynamic human activity. 
Note that, when the transceiver location and the experimental scenario are determined, the static propagation path (i.e., 
the green solid line) in Figure 1 will remain relatively stable and, at this time, the changes in the CSI measurements will 
mainly depend on the changes in the dynamic propagation path (i.e., the red dashed line). That is to say, the CSI can be 
used to realize human activity monitoring by sensing dynamic propagation path changes in the multipath propagation 
of WiFi signals. 

 

 
 

Figure 1. Illustration of WiFi signal multipath propagation. 

1.2. Support Vector Machine 

SVM is a powerful machine learning algorithm capable of processing data in high- dimensional spaces and 
realizing classification and regression analysis by finding optimal hyperplanes. It has achieved a wide range of 
applications in many fields such as image recognition, text classification and signal processing. The core idea is to 

find an optimal hyperplane that separates sample points of different categories as much as possible and maximizes 
the gap between the two categories. The overview diagram of the algorithm is shown in Figure 2. 

 

 
Figure 2. Overview diagram of the SVM algorithm. 
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2. System Design 

2.1. System Overview 

This study aimed to utilize the RF signals generated by a commercial WiFi router to achieve device-free indoor 

human activity detection, which does not require the users to equip any sensing device. As illustrated in Figure 3, 
the proposed system first uses a commercial WiFi router as a transmitter to generate RF signals, while using a 
desktop computer as a receiver to receive RF signals and collect WiFi CSI data that record changes in human activities. 
As the raw CSI data contain a certain quantity of outliers and ambient noise, in the data processing module, we first 
constructed a combined filtering channel, comprising Hampel, wavelet, and moving average filters, in order to filter out 
the outliers and the ambient noise to obtain fine-grained CSI signals recording the changes in human activities. As 

different subcarriers have different center frequencies, this leads to different sensitivities of different subcarriers to 
the same target action. For this reason, we propose a new sensitivity metric, based on which we selected an optimal 
set of subcarriers from 30 candidate subcarriers, where any subcarrier within the optimal set can better record the 
CSI signal changes caused by the target action. In the motion recognition module, we performed reasonable 
segmentation of the selected optimal subcarriers to obtain CSI data segments recording different target actions, then 
extracted a set of feature sets containing both time- and frequency-domain features. Finally, we used the SVM 
algorithm to train a classification model to achieve accurate recognition of three human activities: walking, jumping, 
and falling. 

 

 

Figure 3. Proposed system architecture. 

2.2. Data Collection 

As shown in Figure 4, we deployed an indoor human activity sensing system based on WiFi signals in an office 

with an area of about 20 m2 (width and length of about 4 m and 5 m, respectively). The WiFi transmitter and receiver 
were a commercial router and a Lenovo desktop computer, respectively. Moreover, in order to enhance the strength of 
the received signal, we gave the NIC three external antennas with a gain of 6 dBi. The height of the transmitter and 
receiver from the ground was about 0.75 m, and the relative distance between them was about 2 m. We set the 
transmitter packet rate to 20 pkts/s. During the experiment, we asked volunteers to randomly perform the target 

human activities (i.e., walking, jumping, and falling) on a foam mat. We applied a tool provided in the literature [36] 
to obtain CSI measurements for 30 subcarriers from the NIC. At the same time, we used the HD surveillance device 
already installed in the office to capture video data recording indoor human activities to obtain the ground truth 
and label the dataset. 
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Figure 4. Deployment of the proposed system in an office. 

2.3. Data Processing 

The raw CSI measurements include a large number of outliers and ambient noise, which can seriously affect 
the perception of the system. Therefore, in order to extract effective features to raise the classification accuracy of the 
system, we needed to filter out the outliers and ambient noise mixed with the raw CSI data. 
 

2.3.1. Hampel Filter 

First of all, we filtered out the outliers mixed with the raw CSI data. Figure 5 depicts the amplitude variation in 
30 unprocessed CSI subcarriers with human activities over a 30 s detection period. We can clearly observe that 

there are abnormal amplitudes in the CSI subcarriers at around 1 s, 6 s, 20 s, and 26 s. We filtered out these outliers 
utilizing the Hampel filter, which is a median and median absolute deviation (MAD)-based filter designed to 
identify and remove outliers in time-series data. The Hampel filter is more robust to outliers than traditional mean 
and standard deviation methods. Briefly, given 

, n 
kth sliding window Wi  = ci , . . . , ci 

(1 ≤ k ≤ n − Φ + 1) of length Φ, if any CSI 

k k k+Φ−1 

amplitude ci (k ≤ j ≤ k + Φ − 1) within the current sliding window does not satisfy the condition µi 
j 
− γ × σi ≤ ci ≤ ui 

+ γ × σi , then the Hampel filter treats it as an outlier. 
Here, µi   and

k 
σi  denot

k
e the

j
media

k 
n and M

k
AD of the CSI amplitude in the current sliding 

window
k 
Wi , res

k 
pectively, and γ is a variable constant. For any outlier ci , the Hampel filter 

k j 
will replace it with the median value µi . Figure 6 shows the CSI amplitude variation after 

k 

applying the Hampel filter to all 30 subcarriers. We can clearly observe that all the labeled 
outliers in Figure 5 were accurately removed. The result demonstrates that the Hampel filter is helpful for removing 
outliers from CSI data. 
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Figure 5. Raw CSI signals. 

 

Figure 6. Hampel-filtered CSI signals. 

 
2.3.2. Wavelet Filter 

After removing outliers from the CSI data, we needed to further eliminate high- frequency ambient noise. 
Considering that human activities usually cause abrupt changes in the CSI amplitude, we thus needed to eliminate the 
high-frequency noise while also preserving the amplitude jumps in the CSI signal caused by human actions (i.e., the 

rising/falling edges in the CSI signal). In this context, conventional low-pass filters such as Butterworth filters and 
Chebyshev filters are no longer suitable, as they suppress not only high-frequency noise but also the rising/falling 
edges of the CSI signal. As wavelet filtering can effectively extract the transient and non-smooth information in the 
signal, it can better deal with the abrupt changes and jumps in the signal. Therefore, we utilized the wavelet filter to 
eliminate the high-frequency noise and retain the rising/falling edges. Briefly, wavelet filtering achieves multi-scale 
decomposition and reconstruction of signals through the selection of appropriate wavelet basis functions and scale 
parameters. Common wavelet basis functions are Haar, Daubechies, Symlet, etc., which have different frequency 
characteristics and support ranges. The level decomposition and reconstruction equations for wavelet filtering are 

 
        J−1 

x(t) = ∑ ∑ Wj,k · φj,k(t) (4) 
       j=0 k 

 

where J represents the levels of decomposition, and Wj,k is the jth level and kth wavelet coefficient. For data 

processing, we chose to use a 4-level ‘db4’ as the discrete wavelet basis function, Stein’s unbiased estimation as the 
thresholding criterion, and soft thresholding, and only used the approximation coefficients to ‘reconstruct’ the 
filtered signal. Figure 7 shows the CSI signals after wavelet filtering. Compared to Figure 6, we can clearly observe that 
this eliminated the high-frequency noise while also retaining the rising/falling edges in the CSI signal caused by 
human actions. The results indicate that the wavelet filter is useful for removing high-frequency noise from CSI 
data. 
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Figure 7. Wavelet-filtered CSI signals. 

2.3.3. Moving Average Filter 

For the CSI signals after wavelet filtering, we employed a moving average filter to further smooth the signals, 
reducing the influence of high-frequency noise and preserving the trend of signals in the time domain. Briefly, given a 
signal sequence xn containing N samples, where n is the index of the sample, moving average filtering was 

performed by sliding a window of fixed length M over the signal sequence and computing the mean of the samples 

within the window. For each position k of the sliding window, the filtered output yk can be calculated using the 
following equation: 

y = 
xk + xk−1 + xk−2 + · · · + xk−M+1 

 
(5)            k M 

During data processing, we set the length of the sliding window M to 20, which is the same as the value of the 

packet transmission rate. Figure 8 shows the CSI signals after applying the moving average filter. Compared to 
Figure 7, we can clearly see that the high-frequency noise is further suppressed, and the trends of CSI signals 
induced by human activities (i.e., walking 5 times, jumping 1 time, and falling 1 time) are much clearer and neater. 
Figure 9 shows a comparison of the changes in CSI signals before and after filtering. We can clearly see that, 
compared to the raw CSI signals, the filtered CSI signals become neater and the trend of recorded human activity 
changes is more obvious. 

 

Figure 8. CSI signals after applying moving average filter. 
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(a) 
 

(b) 

Figure 9. CSI signal changes under human activity. (a) Raw CSI signals. (b) Filtered CSI signals. 

2.3.4. Carrier Selection 

As different subcarriers have different center frequencies/wavelengths, this leads to varying sensitivities of 

different subcarriers to human activities. As shown in Figure 9b, we can roughly see that subcarriers 25–30 could better 
perceive the changes in CSI amplitude caused by human activities, while subcarriers 1–15 had lower sensitivity to 
changes in human activities. Therefore, it is crucial to select an optimal set of subcarriers from the 30 candidate 
subcarriers that can fully record the changes in human activities. From Figure 8, it is easy to see that for any human 
activity-induced change in the CSI signal segment, its shape in the time domain is like a ‘mountain peak.’ Therefore, an 
ideal subcarrier should be able to fully depict the set of ‘peaks’ caused by human activities. Based on this observation, we 
define a new metric for selecting an optimal set of subcarriers, which is computed based on two statistics: kurtosis and 
standard deviation. Specifically, given 
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any segment of the CSI amplitude sequence Ci =  ci , . . . , ci

} 
, where i is the subcarrier 

n } sequence number and n is the number of sample points, the sensitivity of Ci = ci , . . . , ci 
 n 

to human activity can be expressed as 
 

i 

(1,n) = (1 − θ) × sdi + θ × kti (6) 

, 2 

u 
∑n ci − c 

 
 

sdi = 
j=1 j 

n 
4

 
1 ∑n ci − c 

(7) 

kti = n     j=1 j — 3 (8) 
2     2 

 1∑ n ci − c 
 

n    j=1 j 
 

where sdi and kti are the standard deviation and kurtosis of Ci, respectively, and θ ∈ [0, 1] is the weighting factor. We 
empirically set θ to 0.6. 

The sensitivity values of all 30 subcarriers to human activities were calculated accord- ing to Equation (6), as shown 
in Figure 10. We can observe that the different subcarriers have different sensitivities to human activity, where 
subcarriers 16–19 present small sensi- tivity values (less than 2), while subcarriers 26–30 have relatively high sensitivity 
values (greater than 3.5). The sensitivities of subcarriers 18 and 30 presented the minimum and maximum values, 
respectively. When comparing Figures 9b and 10, we can see that the subcarrier sensitivity calculated based on the 
proposed metric can better reveal the ampli- tude changes in CSI caused by human activities. Figure 11 shows the 

changes in human activities recorded by subcarrier 30. Overall, the results indicate that the proposed metric achieves 
effectiveness in selecting the optimal subcarrier set. 

 

Figure 10. Calculated sensitivity of each subcarrier to human activity. 

Q 
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Figure 11. CSI amplitude under different human activities (subcarrier 30). 

2.4. Motion Recognition 

After obtaining the sensitivity values of all 30 subcarriers, we selected the top-ten subcarriers according to their 
sensitivity values in order to construct an optimal set of subcarriers. Then, we segmented the 10 subcarriers in the set 

and extracted a set of effective feature sets to train an SVM model. Finally, the trained classification model was utilized to 
achieve non-invasive, low-cost, and accurate human activity detection. 
 

2.4.1. Data Segments 

In order to accurately segment the CSI segments that completely record a particular human activity from a 
continuous CSI signal, we set up a window as a unit to extract features. The duration of the window should be neither 
too long nor too short, given that a long window time can introduce irrelevant target actions, while a short window 
time can lead to incomplete target actions. As the duration of a single target human action (i.e., walking, jumping, or 

falling) usually does not exceed 3 s, we set the duration of the window to that value. Specifically, we first used 
the classical peak-finding algorithm to find a set of data points with local maxima from the CSI signal, and then 
segmented the CSI segments with a duration of 3 s from the CSI signal using the data points as the midpoints. Finally, we 
performed feature extraction on the segmented CSI segments to train the classification model. 

2.4.2. Feature Extraction and Classification 

From Figure 11, it can be seen that walking induces smaller fluctuations in CSI ampli- tude and a shorter duration of 
the movement compared to jumping and falling. Meanwhile, compared to the smoother and more continuous falling 

action, the jumping action can usually be decomposed into several consecutive sub-movements. Based on 
observations of the data and referring to the work of Liu et al. [31], we extracted a set of feature sets containing both 
time- and frequency-domain features (as shown in Table 1) in order to better train the classification model. Although 
deep neural networks (DNNs) and convolu- tional neural networks (CNNs) have shown strong capabilities in feature 
extraction recently, they typically require a large number of training samples and have strict requirements on hardware 
operating parameters. Considering the multiple overheads (e.g., time, money, human resources) of performing the 
data collection and model training tasks, we could only collect a limited number of training samples with affordable 
overheads in our work and, so, we trained the classifier model using a lightweight machine learning algorithm, 
namely, SVM. 
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Precision + Recall 

Table 1. Features used in our system. 
 

Time-Domain Features 
 

max, min, mean, variance, standard deviation, max–min, kurtosis, skewness, mean crossing rate 

Frequency-Domain Features 
 

energy, frequency, sensitivity 

 

3. Evaluation 

In this section, we first introduce the system implementation, then evaluate the overall performance of the 

proposed system; finally, we further discuss the impact of different influencing factors on system performance. 

3.1. Implementation 

3.1.1. Hardware and Software Implementation 

Figure 4 shows the hardware deployment of the system. We used a TP Link WDR5620 wireless router   (TP-Link 
Technology Co., Ltd., Shenzhen, Guangdong   Province, China) as the transmitter of the system, with its operating 
frequency set to 2.4 GHz, and used a Lenovo desktop computer (Lenovo Group, Beijing, China) with a built-in Intel 5300 
network card as the receiver. The transmitter and receiver were both placed on the desk, with a relative distance of about 

2 m. We set the transmission rate to 20 pkts/s. In addition, to enhance the strength of the received signal, we attached 
three antennas with a gain of 6 dBi to the network card of the receiver. Note that we also utilized the HD surveillance 
device already installed in the office to capture video data recording indoor human activities in order to obtain the 
ground truth and label the dataset. We applied a tool provided in the literature [36] to obtain CSI measurements of the 30 
subcarriers from the network card of the receiver. We directly processed and analyzed the collected CSI measurement 
values on a Lenovo desktop computer running Ubuntu 16.04 LTS, and used Matlab 2018b to write programs to 
implement the functions in the data processing and motion analysis shown in Figure 3. 

3.1.2. Environment and Participants 

To evaluate the performance of the proposed system, we invited 10 volunteers to participate in the 

experiment in the office shown in Figure 4. The 10 volunteers included four children (two boys and two girls) and six 
adults (three males and three females), who had a height range of 145 cm to 180 cm and  a weight range of 30 kg to 

80 kg.  During the one-month experiment, we asked each of the volunteers to perform human activities 

including walking (30 times), jumping (30 times), and falling (30 times) on a foam mat every day. Therefore, we captured 

a total of 270,000 CSI data segments (30 times × 10 subcarriers 

× 30 days × 3 types of human activities × 10 people). Note that all experiments were approved by our Institutional 
Review Board. 
 
3.1.3. Performance Metrics 

To quantify the recognition performance of the classifier model on human activities, we used three evaluation 
metrics: accuracy, F1 score, and confusion matrix. These metrics are calculated as follows: 

accuracy =
 TP + TN 

× 100% (9) 

TP + FP + TN + FN 

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, respectively. 

F1 score = 
2 × Precision × Recall 

× 100% (10)
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where Precision =TPand Recall =TP     . For the confusion matrix, each of its 
  

TP+FP TP+FN 

columns represents the predicted activity while each row represents the real activity. 

3.2. Overall Performance 

The recognition performance of the proposed system for indoor human activities, including walking, jumping, and 

falling, is shown in Figure 12. We can observe that the system recognized walking, jumping, and falling with an accuracy 
of 100%, 90%, and 97%, respectively. This result is basically consistent with the phenomenon shown in Figure 8. 
Compared to jumping and falling, walking caused significantly smaller changes in CSI amplitude. As a result, while the 

system could accurately recognize walking, there were still some errors in distinguishing between jumping and falling. 
Overall, the proposed system obtained an average accuracy of more than 95% in recognizing walking, jumping, and 
falling. Figure 12 further illustrates the recognition performance of the system for different volunteers. In the figure, we 
use symbols ‘M’, ‘W’, ‘G’, and ‘B’ to represent adult males, adult females, girls, and boys, respectively. The detection 
performance of the system for adults and children (i.e., accuracy and F1 score) was approximately 95% and 90%, 
respectively. The main reason for this result is that, compared to adults, children’s activities cause weaker fluctuations in 
CSI amplitude due to their lower limb movement speeds and amplitudes. Weaker CSI amplitude fluctuations increase the 
challenge for classifiers in recognizing different activities. Furthermore, we can see, from Figure 13, that there was no 
correlation between the detection performance of the system and the gender of the user. 

 

Figure 12. The overall performance of the proposed system. 

 

Figure 13. The recognition performance of the system for different users. 
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3.3. Impacts of Different Factors 

As shown in Figure 4, we can speculate that the distance between transceivers and their height from the ground 

may affect the performance of the system. In this section, we further discuss the impact of these factors on the robustness 
of the system. 
 

3.3.1. Impact of Transceiver Distance 

We first investigated the impact of the relative distance between transceivers on the detection performance of the 

system. The distance between the transmitter and receiver was increased from 2 m to 3.5 m at an interval of 0.5 m. 
Then, we randomly invited 4 of the 10 volunteers to participate in the experiment. Figure 14 shows the system 
detection performance at different transceiver distances. When the distance between the transceivers was set to 2 m, 2.5 
m, 3 m, and 3.5 m, the average accuracy and F1 score of the proposed system for detecting human activity both 
remained higher than 93%. We can see that the performance of the proposed indoor human activity monitoring system 
decreased slightly with a gradual increase in transceiver distance. The main reason for this result is that the strength 
of the received signal decreases due to the growth of communication distance, leading to smaller CSI amplitude 
fluctuations. Overall, as long as the distance between the transceivers is less than 3.5 m, the system can still achieve 

an acceptable detection performance (average accuracy and F1 score above 93%). 

 

Figure 14. The impact of transceiver distance. 

3.3.2. Impact of Transceiver Height 

We then investigated the effect of the height of the transceiver from the ground on the detection performance of the 

system. The height of the transceiver from the ground was increased from 0.75 m to 1.35 m at an interval of 0.2 m. We 
also randomly invited 4 of the 10 volunteers to participate in this experiment. Figure 15 shows the detection 
performance of the system at different transceiver heights, from which it can be observed that the proposed system 
achieves an average accuracy and F1 score of about 95% for human activity detection under different transceiver height 
conditions. Overall, the detection performance of the proposed system is almost insensitive to the adjustment of 
transceiver height. 
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Figure 15. The impact of transceiver height. 

3.3.3. Impact of Different Classifiers 

We further explored the recognition performance of the proposed system under three other classification models, 

including random forest (RF), k nearest neighbors (k-NN), and decision tree (DT). We evaluated the performance of 
each classifier using 10 -fold cross-validation. For each cross-validation, we ensured that the training/testing datasets 
between different classifiers were the same. The results for the recognition performance of different classifiers on target 
human activities are shown in Table 2. We can clearly observe that the average recognition accuracy of the four classifiers 
for human activities is 95.7%, 92.8%, 91.6%, and 94.3%, respectively. The accuracy of the SVM model is over 95%, which 
is slightly better than the other three classifiers. Note that by fine-tuning parameters or using more training data, we can 
further improve the performance of other classifiers. Overall, the proposed system can achieve a satisfactory recognition 
performance (accuracy above 90%) under different classifiers. 
 

Table 2. Performance comparison of different classifiers. 
 

 Classifier  

Metric (%) SVM k-NN DT RF 

Accuracy 95.7 92.8 91.6 94.3 

F1-score 96 92.3 92.1 94.8 

4. Discussion 

Although the proposed system is capable of achieving contactless, low-cost, and secure indoor human activity 
detection through use of the existing ubiquitous WiFi signals, its limitations are also clear when compared with most 
of the existing related works. For example: 

• Subtle movement. The proposed system only uses a low-cost COTS router as a trans- mitter, which limits its ability to 
sense subtle movements (e.g., heartbeat, respiration, and cough). We will try to deploy a high-gain directional antenna 
to enhance the 

power of the transmitted signal or some wearable and skin-attachable sensors to collect more fine-grained information in 

future experiments so that the proposed method can provide a higher sensing accuracy in recognizing human activity. 
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• Multiple users. The proposed system can only be applied to sense one person’s body movements at a time. The receiver will 
collect a mixed signal recording multiple users’ body movements if they perform activities simultaneously,  and  it is 
challenging to 
decouple the CSI signals of individual body movements from the mixed signal. 

• Cross-domain. The performance of the proposed system relies on environment-related domains including position, orientation, 
and static objects. As such, a classifier model 

trained using data collected in a given environment may not perform well in a new environment. We will try to apply 

transfer learning or adversarial learning method- ologies to improve the cross-domain sensing performance in future work. 

5. Conclusions 

In this study, the existing ubiquitous radio frequency signals generated by a COTS WiFi router were utilized to recognize 
indoor human activities, including walking, jumping, and falling, providing an approach that is non-intrusive, low-cost, and secure 
for users. In order to achieve accurate and robust detection, we first applied multiple filters to eliminate the outliers and ambient 
noise existing in original CSI measurements, to obtain fine-grained CSI signals. Then, an optimal set of subcarriers sensitive to all 

target activities was selected based on a novel metric, and we finally extracted a set of effective features to train an SVM-based 
activity recognition system. Extensive experiments involving 10 participants were conducted, and the results demonstrated that 
the proposed system achieved 95% accuracy in recognizing walking, jumping, and falling activities. We envision that the 
proposed method can be utilized in various indoor applications, thus benefiting people in their daily lives. 
 

or financial relationships that could be construed as a potential conflict of interest. 
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