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Abstract

In this paper we introduce and study a new classes of sets called closed sets and   open 
sets. Moreover we investigate some of their fundamental properties. 
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1. Introduction

In 1970, the study of so called g-closed set that is, the closed sets and g-closed sets 
coincide was introduced. The notion has been studied extensively in recent years by many 
topologies because g-closed sets are not only a natural generalization of closed sets. More 
importantly, some of these have been found to be useful in computer Science and digital 
topology. So the study of 
g-closed sets will give the possible applications in computer graphics [16]. A subset A of 
a topological space (X,) is g-closed set if the closure of A is included in every open 
superset of A is initiated by Levine [9] 

Levine [9] introduced semi open sets in topological space. As generalizations of semi –
closed sets, gs -closed and sg-closed sets were introduced and studied by Devi et al [11]. 
Arya and Nour [14]  used gs -open sets to obtain some characterizations of s- normal 
spaces. 

 A subset A of a topological space  is said to be pre open if A  int(Cl(A))   and preclosed 
if Cl(Int(A))  A which was introduced by Mashhour 

 Recently M.K.R.S.Veera Kumar[6] Introduced a new open set ,  open sets in topological 
spaces ,Which is defined later in this paper

More recently S.Pious Missier et al [12] introduced a new open set , ρ in topological 
spaces.
A subset A of a topological space (X,) is said to be  ρ - closed set if  pCl(A)  Int(U) 
whenever AU and U is open.  open set is also introduced by S.Pious Missier[12], which is 
defined later in this paper.
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The aim of this paper is to introduce the notions of closed sets,  open sets.

 Through out this paper ,space (X,) (or simply X ) always means a topological space on 
which no separation axioms are assumed unless explicitly mentioned. For a subset A of a 
space X ,Cl(A),Int (A), Ac denote Closure of A interior of A and the complement of A 
respectively.

2.Preliminaries

For the sake of convenience, we begin with some basic concepts although most of these 
concepts can be found from the references of this paper.

Defnition:2.1

A subset A of a space X is called
1. a semi open set  if A   Cl(Int (A))
2. a pre open set if A   Int(Cl(A))
3. a regular open set  if A  = Int(Cl(A))

4. a π open set if A  =  (regular open sets)
The complement of semi open sets (respectively pre open, regular open and π open) are 
called semi closed sets 
( respectively pre closed ,regular closed and 
π closed).
 The semi Closure (respectively pre Closure) of a subset A of X denoted by sCl (A) (pCl
(A)) is the intersection of all semi closed sets (pre closed sets) containing A

Definition 2.2

A subset A of a space X is called
1. Generalized closed [9] if Cl(A)  U ,whenever
    A  U and U is open in X

2. Semi generalized closed (denoted by sg-               
   closed)[10] if  sCl(A)  U ,whenever   A    
     U and   U is Semi open in X

3. Pre generalized closed[3](denoted by pg-          
  closed)   if  pCl(A)  U ,whenever A  U  
  and U is  pre open in X

4. Generalized semi  closed (denoted by gs-   
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     closed)[10] if  sCl(A)  U ,whenever  
   A  U and  U is open in X 

5. Generalized pre closed [3] (denoted by           
    gp- closed) if  pCl(A)   U ,whenever    
   A   U    and  U is  open in X.

6.  π  generalized closed (denoted by π g-    

   closed)[4] if Cl(A)  U ,whenever A  U  
   and U is  π  open  in X

7. closed if  Cl(A)   U [6] ,whenever 
   A   U and  U is semi  open in X

8. closed if  Cl(A)   U [6] ,whenever     
    A   U and U is   open in X

9. gs closed [6] if  sCl(A)  U ,whenever

    A   U  and U  is  open in X

10. closed [6] if  Cl(A)   U ,whenever  A   U 
    and  U is #gs open in X

11.ρ closed[12] if  pCl(A)  Int U whenever     
     A   U and U is  open in X

12. η closed  [7] if pCl(A)  U,whenever A  U and U is   open in X

13.*closed[8]  if spCl(A)  U,whenever
     A  U and U is   open in X.
    

The complement of the closed sets are called as their respective open sets.

3.  -  CLOSED SETS

Definition: 3.1 Let (X,) be a topological space. A Subset A of X is said to be a closed set  
if  sCl(A)   Int(U) whenever A  U , where U is  open. in X.

3



The class of all  closed subsets of X is denoted by  C(�)

Theorem :3.2

In any topological space (X,), every closed set is  closed and every open set is  open set.
Proof is obvious.

Remark :3.3
Converse of the above statement need not be true as seen from the following example.

Let X ={a,b,c,d}, = { Ø,X,{a,b}}. A={a,c,d} is  closed but not closed.
B={b,c} is  open but not open

Theorem 3.4

Every closed subset of a topological space (X,)  is *gs closed.

Proof
Let A be an   closed subset of X  and U is  open such that A  U.
A is closed implies sCl(A)  Int U  U
Therefore A is *gs  closed.

Remark :3.5
Converse is not true from the following example. That is every *gs closed set is not 
 closed.

Example:3.6

Let X ={a,b,c,d}, = { Ø,X,{a,b}}. A={c} is *gs closed but not  closed.

Theorem 3.7

Every closed subset of a topological space (X,)  is * closed.

Proof
Let A be an   closed subset of X  and U is open such that A  U.
A is closed implies sCl(A) Int U U. We have spCl(A)  sCl(A)  U
Therefore A is * closed.

Remark :3.8 

Converse is not true from the following example. That is every * closed set is not 
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 closed

Example:3.9

Let X ={a,b,c,d}, = { Ø,X,{a,b}}. A={c} is * closed but not
 closed.

Theorem :3.10

 In a topological space X ,Union of two closed sets is not a  closed set.

Example: 3.11

Let X ={a,b,c,d}, = { Ø,X,{a},{a,b}}.{a} and {b} are  closed but{a,b}is not 
 closed.

Theorem :3.12

In a topological space X ,intersection  of two closed sets is also not a  closed set.

Example: 3.13

Let X ={a,b,c,d,e}, = { Ø,X,{a},{b},{a,b},{b,c,}{a,b,c},{a,b,d},{a,b,c,d}}.{a.b.e} and 
{b,c} are  closed but{b}is not  closed

Hence  C(�) is not a topological space.

Remark:3.14
 closed set and semi closed sets are independent sets 

Example : 3.15
Let X ={a,b,c,d,e},
={Ø,X,{a},{b},{a,b},{b,c,}{a,b,c},{a,b,d},{a,b,c,d}}.{a.b.e} is  closed but not semi 
closed.

Let X ={a,b,c,d}, = { Ø,X,{a,b}}. A={c} is semi closed but not  closed.

Theorem :3.16

If A is  closed set ,then sCl(A) \ A does not contain any non empty closed set.
 Proof: Given  A is  closed set.Let F be a non empty  closed set such that 
F  (sCl(A)\ A),which clearly implies A   ,where  is  open .Since A isclosed 
sCl(A)  int()  .Hence 
F  X\ sCl(A),also we have F sCl(A).Therefore
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F [X\ sCl(A)] ∩ sCl(A) = Ø is a contradiction to F is a non empty  closed set.
Hence sCl(A) \A does not contain any nonempty  closed set.

Remark :3.17 
Converse of the above statement need not be true as seen from the following example.
That is If sCl(A) \ A contains no nonempty  closed set, then A need not be  closed.

Example:3.18
Let X={a,b,c,d,e}, 
={Ø,X,{a},{b},{a,b},{b,c,}{a,b,c},{a,b,d},{a,b,c,d}}.A={b,d},
sCl(A) = {b,c,d}.Here sCl(A)\ A={c}is not closed,That is sCl(A)\ A does not contain any 
nonempty  closed set. Still A is not  closed.

Corollary:3.19

Let A be  closed set in (X,).Then A is semi closed if and only if sCl(A) \ A is  closed
Proof:
Necessity: Let A be a closed and semi closed set in a topological space, (X,).Then sCl(A) 
= A,which implies
 sCl(A) \ A = Ø,which is   closed

Sufficiency:Suppose sCl(A) \ A is   closed. Since A is  closed,by theorem 3.16
 sCl(A) \ A =Ø . Hence sCl(A) = A,which means A is semiclosed.

Theorem :3.20

If A is closed set ,then sCl(A) \ A does not contain any non empty   closed set.
Proof:
 Given  A is  closed set.Let F be a non empty  closed set  such that 
F  (sCl(A)\ A),which clearly implies 
A  FC ,where FC is  open .As every open set is  open we have A  FC ,with FC  open.Since 
A isclosed 
sCl(A)  int(FC)  FC.
Hence F  X \ sCl(A),also we have 
F  sCl(A).Therefore F  [X\ sCl(A)] ∩ sCl(A)] = Ø is a contradiction to F is a non empty  
closed set. Hence sCl(A) \ A does not contain any nonempty closed  set.     

 Remark :3.21
 Converse of the above statement need not be true as seen from the following example.
That is If sCl(A) \ A contains no nonempty  closed set, then A need not be  closed.

Example:3.22
Let X ={a,b,c,d,e},
={X,,{a},{b},{a,b},{b,c,}{a,b,c},{a,b,d},{a,b,c,d}}.A={b,d},
sCl(A) = {b,c,d}.Here sCl(A)\ A={c}is notclosed,That is sCl(A)\ A does not contain any 
nonempty  closed set. Still A is not  closed.
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Remark:3.23
 closed set and  closed sets are independent sets  which can be explained through the 
following example

Example : 3.24

Let X ={a,b,c,d,e},
={Ø,X,{a},{b},{a,b},{b,c,}{a,b,c},{a,b,d},{a,b,c,d}}.{a}is  closed but not  closed  X =

{a,b,c,d}, = { Ø,X,{a,b}}. A={c} is  closed but not  closed

Theorem :3.25

   
Let A and B be any two subset of a space X.If A is  closed and A  B  sCl(A),then B is  
closed.
 Proof:
Suppose that B  U,with U is  open of X.As A  B  and B  U, we have A  U.Since A is   
closed , sCl(A)  Int(U).By hypothesis we have B  sCl(A),which implies sCl(B)  sCl(A)  
Int(U).This shows that A is  closed.

References

• Dontchev J, Maki H. On behavior of gp-closed sets and their generalizations. Mem 
Fac   Sci  Kochi Univ Ser A (Math) 1998;19:57–72

• G. Aslim, A.Caksu Guler and T. Noiri, On πgs – closed sets in topological spaces.     
Acta.Math.Hungar. 112(4) (2006),275-283

• Gnanambal Y. On generalized preregualr closed sets in topological spaces. Indian J   

Pure  Math 1997;28(3):351–60.

• J. Dontchev and T. Noir, quasi normal spaces and g –closed sets, Acta Math.Hungar.   
89 (2000),211 -219.

• J.H.Park,On gp closed sets in topological spaces, Indian J.Pure Appl.Math ( to    
appear).

• M.K.R.S VEERAKUMAR, on   – closed sets in topological spaces. Bull. Allahabad 
math. Soc. 1892003), 99-112.

• J.Antony Rex Rodrigo, S.Pious Missier , on -closed sets in topological     spaces(to be  
communicated)

• N.Palaniappan , J.Antony Rex Rodrigo , S.Pious Missier , on -closed sets in 
topological spaces(to be communicated)

• N.Levine,Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970),   
89-  96.

• Parithosh Bhattacharyya and B.K.Lahiri On semi generalized closed sets in    

7



topology (1987)375-382

• R.Devi,H.Maki and K.Balachandran,semi generalized closed maps and generalized       
semi –      closed maps, Mem.Fac.Kochi. Univ.ser.A (Math),14 (1993), 41-54.

• S.PiousMissier, C.Devamanoharan, M.Caldas, And  S.Jafari.On ρ – closed sets in   
topological  sapces. (to appear).

• Saied Jafari.M.Leiiies Thivagar and Nirmala Rebecca Paul, Remarks on  closed   
sets in topological spaces.

• S.P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J.Pure       Appl. 

Math. 21 (1990),  717-719.

• S.S.Benchalli and R.S.Walli, On RW – closed sets in topological spaces(2007),99-
110

•  T.Y.Kong,R.Kopperman and P.R.Meyer,A topological approach to digital topology, 
Amer.Math.Monthly, 98(1991), 901-917.

• V.Zaotsav,On certain Classes of topological spaces and their       bicompactifications, 
Dokl.Akad Nauk SSSR,  178(1978),778- 779

8


