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LEMMA AND THEOREM WHICH HELP US TO FIND A REPRESENT ATION FOR A

SOLENOIDAL VECTOR FIELD IN CARTESIAN CO-ORDINATES |

Abstract:
In many physical
situations, the
governing equations of
motion are usually
given as a vector
equation where the
quantity of physical

interest may be a|[

vector, like the fluid
velocity in fluid flows.
However, it has been
observed that when
these quantities are
expressed in terms of a
scalar field, the scalar

satisfies a  much
simpler partial
differential  equation
than the given vector.
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INTRODUCTION :
A simple example ig
the role played by ¢
velocity potential in
irrotaticnal flows or a4
stream function in twg
dimensional,

incompressible,
inviscid flows. Such 4

representation Of problems involving  sphericd
vector fields  using poundaries, since the sca
scalar functions is, infunctions occurring in it satisf
particular, useful in simple  partial  differentia
boundary valug equations which can be solve
problems  when thegasily. Moreover, the bounda
boundary  conditions conditionrexpressed in terms
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relations in terms of thes
scalars.
In 1967, Chadwick an

Trowbridge [6] showed that an
divergence free vector field
can be expressed as

V = Curl Curl(rA) + Curl(rB),

where A and B are scal;
functions on any bounde
annular domain

§={(rb,p):m <r<m0<0<m0<p<inl,

where (7,0, ¢) are spherica
polar co-ordinates.
> This result was found to b
Aextremely useful in the conte
of Stokes equations where t
velocity vector is solenoidal as
) gives rise to a complete gene
solution of Stokes

equations [7], which in turf
L proves to be very convenient

reduce to simple

very simple form.

infinitedomain (r200)
with
conditions

On V

31
dised in [7]
to prove the
completeness of
certain solution of
\IStokes equations. Th
proof of this
extension was give
Xby Padmavathi an
NAmaranath [9]. This
ifepresentation mal
'alot be convenient t

Irepresentation i
agiven for divergence

Y free (solenoidal
vector fields which ig
2@diseful in  problems

Ntlealing with plane
of

-~

boundedness

his extension was

n ]
jPoIar Co-ordinates

/9] which establish

5
h

L

these scalar functions are of a

N TERMS OF TWO

boundaries. By
making use of this
representation,  we
establish the

completeness of some
general solutions of
Stokes, Brinkman
and Oseen equations
proposed for plane
boundaries in a later
chapter. Despite the
similarity in  the

structure  of the
solution in both the

eChadwick and ;

Trowbridge [6] spherical [7]. and
dobserved that thaplane geometries, the
yesults  can  be Proof of
Vextended  to ancompleteness of the

solution in the plane
boundaries case is not
obtained by merely
mimicking the proof

given in [7] and

requires completely a
different  approach

altogether.

e
2.2Solenoidal Vector
Fields in Spherical

We now discuss
some results given in

the completeness of

use for plang _ _
"boundaries. In thig Certain  solutions of
irthapter a  ney Stokes and Brinkman

equations in infinite
domains involving
spherical bound-aries.
The following lemma
and theorem for
infinite domains are
due to Padmavathi
and Amaranath [9].
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Lemma 1: Let Ze C* on S, where $is given by

So=drb.yir>mn >80

If Z satisfies
reZ=0,
reCurlZ =0,
AeZ =0,
on S, then
Z=0,
ons.

(2.2.1)
(2.2.2)
(2.2.3)

(2.2.4)

Theorem 1 If V € C? on S and satisfiea *V = 0, then we can find scalar functions A andigh that on S

V can he represented as

V = Curl Curl(rA) +Curl(rB), (2.2.5)

where A and B are solutions of the following eqoas

LA=—reV,

LB = —r e« CurlV,

(2.2.6)
(2.2.7)

where L is the transverse part of the Laplace apeexcept for the factor £/in spherical polar co-

ordinates(”, 7, ©) . From the theorem discussed above pibssible to express the velocity vector which is
solenoidal in terms of two scalars A and B. Thigresentation is used in Chapter-3 to prove the tetamess

of the solutions of homo—-geneous and non-homogenansteady Stokes equations. In the next sectien, w
shall discuss the representation of solenoidalovdilds in cartesian co-ordinates.

2.3 Solenoidal Vector Fields in Cartesian Co-ordinas

We state a lemma and theorem which enable usdaafiepresentation of a solenoidal vector field in
cartesian co-ordinates in terms -of certain sdalactions and also determine the partial differ@rgiguations
satisfied by the scalars themselves. The prooteiemma and theorem given here cannot be obtdiped
merely emulating the proof given in the case ofsiglal boundaries stated in the previous section.

Lemma 2: If Z E C(IR% and satisfies

= O’
urlz =0,
0,

> & &

4

C

ya—

then Z can be expressed in the form
Z = Curl(kB),

Where

LB]_ =0

And

(2.3.1)
(2.3.2)
(2.3.3)

(2.3.4)

(2.3.5)
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H? 02
oz Oy (2.3.6)
Proof: Let R R .
Z = ui+ vj + wk.
Tl @)
From equation (2.3.1), w = 0. Consider the follogvpartial differential equations
Bix =-u (2.3.8)
Bly = u. (2.3.9)
From (2.3.3), since
U - U =0, (2.3.10)

the above system (2.3.8, 2.3.9) is consistent harktexists a scalar function B1 which satisfie8.4 or
(2.3.8, 2.3.9). From equation (2.3.2), we have

Vy-Uy = 0. (2.3.11)
Hence using equations (2.3.8) and (2.3.9), we get
Bixx+ By =0, i.e,, LB =0, (2.3.12)
which is the same as equation (2.3.5).

Theorem 2:1f V € C(IR®) and satisfied * V = 0, then we can find scalar functions A and Bhsihat

V = Curl CurltA) + Curl(kB),
=(Ae+B) 1+ (A, B))J - LAE. (2.3.13)

Proof : Let A and B be the solutions of

LA=  -keV, (2.3.14)
LB, = -ke CurlV, (2.3.15)

respectively, where L is given in (2.3.6). For dixed z, if f(xX) denotes the right hand sides oliatipns
(2.3.14) or (2.3.15) where X = (X, y) and if we @s® that f satisfies the following conditions iretfx, y)
plane :

1. | f(x) [log(1+ | x |)is integrable,
2. f (x) is Holder continuous of exponenfor 0 <a < 1,

then the solutions of equations (2.3.14) and (8)3ekist and are twice continuously differentiabled the
second derivative of the respective solutions asilét continuous of the same exponeril8]. We assume
in the rest of the thesis that V is such that tgbtrhand sides of equations (2.3.14) and (2.3sbfisfy the
above conditions. Define

Z =V - Curl Curl¢A) - Cur-1(B,). (2.3.16)
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Observe that

k-Z = k-V+LA=0 {from (2.3.14)), (2.3.17)
k-CurlZ = k.CurlV+ LB, =0 (from (2.3.15)), (2.3.18)
Vez=0. (2.3.19)

Using conditions (2.3.17)-(2.3.19), it follows frdnemma 2 that such a Z can be expressed
As
Z = CurlkB,), (2.3.20)
Where
LB, =0. (2.3.22)

Hence we observe further that

Curl(kB,) = V — Curl Curl(kA4) — Curl(kB,), (2.3.22)
Or
V = Curl Curl(tA) + Curl{B,). (2.3.13)
Where
B = Bl+ Bz, 2323)

and therefore from (2.3.15) and (2.3.21)
LB = -k « CurlV. (2.1724)

Hence the theorem.

The representation given for the velocity vector(?3.13) is used in the Chapter-4, to discuss
complete general solutions of Stokes, Brinkman @sden equations in carte-sian co-ordinates. Incpéat,
we discuss the Stokes flow in the presence of mepteundary for both rigid as well as shear-fregnioary
conditions. It is observed here that the representgiven in (2.3.13) is very simple to use as loeindary
conditions formulated in terms of A and B assumery simple form.

In the next chapter we discuss the complete geselafions of homogeneous and non-homogeneous
unsteady Stokes equations and their applications.
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