ISRI

THEORETICAL ASSEPECTS OF THE LAWS OF GENERAL RELATIVITY

Amit Prakash

Research Scholar , J.P.Univ. Chapra .

Abstract

This paper shows the theoretical consideration of the laws of general relativity using Einstein equations, linking the curvature of space time. It is found that the g is a solution of the Einstein equations and f is a diffeomorphism of the manifold onto itself, then the pullback $f^{*} g$ is also a solution.

INDEX-TERM: Relativity, Einstein equations \& Space time.

INTRODUCTION

The laws of General Relativity are the Einstein equations, linking the curvature of space time to its matter content.[1-2]

$$
\begin{equation*}
G_{\mu \nu}:=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=2 T_{\mu \nu} \tag{1}
\end{equation*}
$$

(Rationalized units $4 \pi G=1$.) Here $T_{\mu \nu}$ is the energy-momentum tensor of matter, $G_{\mu \nu}$ the Einstein tensor, $\mathrm{R}_{\mu \nu}$ the Ricci tensor[3-4] and R the scalar curvature of the metric $\mathrm{g}_{\mu \nu}$.

According to original Bianchi identity

$$
\begin{equation*}
\nabla_{[\alpha} R_{\beta \gamma] \delta \epsilon}:=\nabla_{\alpha} R_{\beta \gamma \delta \epsilon}+\nabla_{\beta} R_{\gamma \alpha \delta \epsilon}+\nabla_{\gamma} R_{\alpha \beta \delta \epsilon}=0 \tag{2}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\nabla^{\nu} G_{\mu \nu}=0 \tag{3}
\end{equation*}
$$

the twice contracted Bianchi identity . This identity (3) implies

$$
\begin{equation*}
\nabla^{\nu} T_{\mu \nu}=0 \tag{4}
\end{equation*}
$$

the equations of motion of matter.

The Einstein vacuum equations are

$$
\begin{equation*}
\mathrm{T}_{\mu \nu}=0 \tag{5}
\end{equation*}
$$

Then the equations $\mathrm{G}_{\mu \nu}=0$ are equivalent to

$$
\begin{equation*}
\mathrm{R}_{\mu \nu}=0 \tag{6}
\end{equation*}
$$

The curvature tensor[5] in arbitrary local coordinates is as

$$
\begin{array}{r}
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\alpha} g_{\beta \nu}+\partial_{\beta} g_{\alpha \nu}-\partial_{\nu} g_{\alpha \beta}\right) \\
R_{\mu \lambda \nu}^{\alpha}=\partial_{\lambda} \Gamma_{\mu \nu}^{\alpha}-\partial_{\nu} \Gamma_{\mu \lambda}^{\alpha}+\Gamma_{\beta \lambda}^{\alpha} \Gamma_{\mu \nu}^{\beta}-\Gamma_{\beta \nu}^{\alpha} \Gamma_{\mu \lambda}^{\beta} \\
R_{\mu \nu}=R_{\mu \alpha \nu}^{\alpha}=\partial_{\alpha} \Gamma_{\mu \nu}^{\alpha}-\partial_{\nu} \Gamma_{\mu \alpha}^{\alpha}+\Gamma_{\beta \alpha}^{\alpha} \Gamma_{\mu \nu}^{\beta}-\Gamma_{\beta \nu}^{\alpha} \Gamma_{\mu \alpha}^{\beta} \tag{9}
\end{array}
$$

P.P. denotes the principal part, i.e. part containing the highest (i.e. $2 n d$) derivatives.

$$
\text { P.P. }\left\{R_{\mu \nu}\right\}=\frac{1}{2} g^{\alpha \beta}\left\{\partial_{\mu} \partial_{\alpha} g_{\beta \nu}+\partial_{\nu} \partial_{\alpha} g_{\beta \mu}-\partial_{\mu} \partial_{\nu} g_{\alpha \beta}-\partial_{\alpha} \partial_{\beta} g_{\mu \nu}\right\}
$$

The Symbol. we substitute in the principal part

$$
\partial_{\mu} \partial_{\nu} g_{\alpha \beta} \text { by } \xi_{\mu} \xi_{\nu} \dot{g}_{\alpha \beta}
$$

where ξ_{μ} are the components of a covector and $g_{\alpha \beta}$ the components of a possible variation of g.

ANALYSIS

We first obtain the symbol σ_{ξ} at a point $p \in M$ and a covector $\xi \in T^{*}{ }_{p} M$ for a given metric g

$$
\left(\sigma_{\xi} \cdot \dot{g}\right)_{\mu \nu}=\frac{1}{2} g^{\alpha \beta}\left(\xi_{\mu} \xi_{\alpha} \dot{g}_{\beta \nu}+\xi_{\nu} \xi_{\alpha} \dot{g}_{\beta \mu}-\xi_{\mu} \xi_{\nu} \dot{g}_{\alpha \beta}-\xi_{\alpha} \xi_{\beta} \dot{g}_{\mu \nu}\right)
$$

Here we consider,

$$
\begin{aligned}
\left(i_{\xi} \dot{g}\right)_{\nu} & =g^{\alpha \beta} \xi_{\alpha} \dot{g}_{\beta \nu}, \\
(\xi, \xi) & =g^{\alpha \beta} \xi_{\alpha} \xi_{\beta} \\
(\xi \otimes \zeta)_{\mu \nu} & =\xi_{\mu} \zeta_{\nu}, \\
g^{\alpha \beta} \dot{g}_{\alpha \beta} & =t r \dot{g} .
\end{aligned}
$$

Then we can write

$$
\left(\sigma_{\xi} \cdot \dot{g}\right)=\frac{1}{2}\left\{\xi \otimes i_{\xi} \dot{g}+i_{\xi} \dot{g} \otimes \xi-\operatorname{tr} \dot{g} \xi \otimes \xi-(\xi, \xi) \dot{g}\right\}
$$

The general situation is as follows. We have a Lagrangian $L=L(x, q, v)$. Here,
x. independent variables

$$
x^{\mu}, \mu=1, \ldots ., n
$$

q. dependent variables $q^{a}, a=1, \ldots ., m$
v. 1st derivatives of dependent variables $\quad v_{\mu}^{a}, \mathrm{n} \times \mathrm{m}$ matrices.

Solution of the Euler-Lagrange equations. For a solution ua of the Euler-Lagrange equations we substitute.

$$
\begin{aligned}
q^{a} & =u^{a}(x) \\
v_{\mu}^{a} & =\frac{\partial u^{a}}{\partial x^{\mu}}(x)
\end{aligned}
$$

and require.

$$
\begin{equation*}
\frac{\partial}{\partial x^{\mu}}\left\{\frac{\partial L}{\partial v_{\mu}^{a}}(x, u(x), \partial u(x))\right\}-\frac{\partial L}{\partial q^{a}}(x, u(x), \partial u(x))=0 \tag{11}
\end{equation*}
$$

Defining

$$
\begin{aligned}
p_{a}^{\mu} & =\frac{\partial L}{\partial v_{\mu}^{a}} \\
f_{a} & =\frac{\partial L}{\partial q^{a}}
\end{aligned}
$$

the Euler-Lagrange equations become.

$$
\frac{\partial p_{a}^{\mu}}{\partial x^{\mu}}=f_{a}
$$

The q, v, p, f are analogous to position, velocity, momentum and force, respectively, in classical mechanics. P.P. of the Euler-Lagrange equations.

$$
\begin{gathered}
h_{a b}^{\mu \nu} \frac{\partial^{2} u^{b}}{\partial x^{\mu} \partial x^{\nu}}(x, u(x), \partial u(x)), \\
h_{a b}^{\mu \nu}=\frac{\partial^{2} L}{\partial v_{\mu}^{a} \partial v_{\nu}^{b}}(x, q, v) .
\end{gathered}
$$

Linearized equations. The P.P. of the linearized equations is $h_{a b}^{\mu v}(x, u(x), \partial u(x)) \frac{\partial^{2} u^{b}}{\partial x^{\mu} \partial x^{v}}$. The u^{a} are the variations of the unknown functions. We consider highly oscillatory solutions

$$
\begin{equation*}
\dot{u}^{a}=\dot{w}^{a} e^{i \Phi} \tag{12}
\end{equation*}
$$

Write $\frac{\Phi}{\varepsilon}$ in place of Φ. Substitute in the actual linearized equations and keep only the leading terms as $\varepsilon \rightarrow 0$. This will give

$$
\begin{equation*}
h_{a b}^{\mu \nu}(x, u(x), \partial u(x)) \dot{w}^{b} \frac{\partial \Phi}{\partial x^{\mu}} \frac{\partial \Phi}{\partial x^{\nu}} \tag{13}
\end{equation*}
$$

This is the symbol $\sigma_{\xi} \omega$, where $\xi_{\mu}=\frac{\partial \Phi}{\partial \mathrm{x}^{\mu}}$. Thus, in general the symbol of the EulerLagrange equations is

$$
\begin{align*}
\left(\sigma_{\xi} \cdot \dot{u}\right)^{a} & =h_{a b}^{\mu \nu} \xi_{\mu} \xi_{\nu} \dot{u}^{b} \tag{14}\\
& =\chi_{a b}(\xi) \dot{u}^{b} \tag{15}
\end{align*}
$$

where $\chi_{\mathrm{ab}}(\xi)=\mathrm{h}_{\mathrm{ab}}^{\mu \mathrm{v}} \xi_{\mu} \xi_{v}$ is an $m \times m$ matrix whose entries are homogeneous quadratic polynomials in ξ.

Let M be a n-dimensional manifold. Then the characteristic subset $C^{*} \subset T^{*}{ }_{x} M$ is defined by

$$
\begin{aligned}
C_{x}^{*} & =\left\{\xi \neq 0 \in T_{x}^{*} M: \text { null space of } \sigma_{\xi} \neq 0\right\} \\
& =\left\{\xi \neq 0 \in T_{x}^{*} M: \operatorname{det} \chi(\xi)=0\right\} .
\end{aligned}
$$

If $\xi \in C^{*}{ }_{x}$, then we have non-trivial null space of σ_{ξ}.
Simplest Example with a non-empty characteristic. linear wave equation.

$$
\mathrm{u} .=\mathrm{g}^{\mu \mathrm{v}} \nabla_{\mu}\left(\partial_{\mathrm{v}} \mathrm{u}\right)=0
$$

The symbol is $\sigma_{\xi} u=\left(g^{\mu v} \xi_{\mu} \xi_{v}\right) u$. And we find the characteristic to be $C^{*}{ }_{x}=\left\{\xi \neq 0 \in T^{*}{ }_{x} M\right.$. $\left.(\xi, \xi)=g^{\mu v}=\xi_{\mu} \xi_{v}=0\right\}$, which means $C^{*}{ }_{x}$ is a null cone in $\mathrm{T}^{*}{ }_{x} \mathrm{M}$.

Now return to the symbol for the Einstein equations. Set

$$
\begin{equation*}
\dot{g}=\zeta \otimes \xi+\xi \otimes \zeta \tag{16}
\end{equation*}
$$

for an arbitrary covector $\zeta \in T^{*}{ }_{x} M$. Then

$$
\begin{equation*}
i_{\xi} \dot{g}=\underbrace{(\zeta, \xi)}_{=g^{\mu \nu} \zeta_{\mu} \xi_{\nu}} \xi+(\xi, \xi) \zeta \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr} \dot{g}=2(\zeta, \xi) \tag{18}
\end{equation*}
$$

We see that

$$
\begin{equation*}
\sigma_{\xi} \cdot \dot{g}=0 \tag{19}
\end{equation*}
$$

CONCLUSION

This paper summarized the null space which is non-trivial for every covector ζ. This is due to the fact that the equations are generally covariant. I.e. If X is a (complete) vector field on M then X generates a 1-parameter group $\left\{f_{t}\right\}$ of diffeomorphisms of M and

$$
\mathcal{L}_{X} g=\left.\frac{d}{d t} f_{t}^{*} g\right|_{t=0}
$$

the Lie derivative with respect to X of g , is a solution of the linearized equations.

REFERENCE

[1] R. Bartnik. Existence of maximal surfaces in asymptotically at space-times. Comm. Math. Phys. 94. (1984). 155-175.
[2] R. Bartnik. The mass of an asymptotically at manifold. Comm. Pure appl. Math. 39. (1986). 661-693.
[3] L. Bel. Introduction d'un tenseur du quatrieme ordre. C.R. Acad. Sci. Paris 247. (1959). 1094.
[4] H. Bondi. Nature. 186. (1960). 535.
[5] J. Cheeger, D. Ebin. Comparison Theorems in Riemannian Geometry. North-Holland Publ. Comp. (1975).

