Indian Streams Research Journal ISSN 2230-7850 Impact Factor : 1.7604(UIF) Volume-3, Issue- 2, March -2013

ON ORTHONORMAL SERIES EXPANSION OF MARCHI – FASULO TRANSFORMATION

A.M. Mahajan

Department of Mathematics and Statistics, Walchand College of Arts and Science Solapur.

Abstract :

The purpose of this paper is to extend the classical Marchi – Fasulo Transformation of Generalised functions by using orthonormal series expansion of generalized function.

INTRODUCTION : -

Certain orthonormal series expansions of various generalized functions lead to the socalled finite integral transformation. Zemanian A.H.(1968 a,b) has extended finite Laplace, Hermite, Jacobi, & finite Hankel transformation of generalized function by using orthonormal series expansions of generalized functions.

In this paper we define the type of gereralized functions to which Finite Marchi – Fasulo Transformation has been applied. The Finite Marchi – Fasulo Transformation of a function f (z) defined on the integral (- π , π) is defined as ,

$$F(n) = \int_{-\pi}^{\pi} F(z) p_n(z) dz$$

For which the inversion is given by,

$$f(z) = \sum_{n} \frac{F(n)}{\lambda_{n}} p_{n}(z)$$

Where,

$$p_n(z) = Q_n \cos(a_n z) - w_n \sin(a_n z)$$

$$Q_n = a_n (\alpha_1 + \alpha_2) \cos(a_n \pi) + (\beta_1 - \beta_2) \sin(a_n \pi)$$

$$w_n = (\beta_1 + \beta_2) \cos(a_n \pi) + (\alpha_2 - \alpha_1) a_n \sin(a_n \pi)$$

NOTATION & TERMINOLOGY :-

In this work Z is real one dimensional variable restricted to some open integral I = (-h , h) and n will be a non-negative integer. The conventional or generalized derivative of a function θ is denoted by D θ , and n^{th} derivative of θ is denoted by $D^n \theta$.

The Testing Function space β and its Dual β' .

Consider the functions $\psi_n(z)$ defined on I as , $\psi_n(z) = \frac{p_n(z)}{\sqrt{\lambda_n}}$

Where $p_n(z) = Q_n \cos(a_n z) - w_n \sin(a_n z)$

Where a_n are the positive roots of the equation,

$$(\alpha_1\beta_2 - \beta_1\alpha_2) a \cos^2(a\pi) + (\alpha_1\alpha_2 a^2 \beta_1\beta_2) \sin(2a\pi) + (\alpha_2\beta_1 - \alpha_1\beta_2)\sin^2a\pi = 0$$

Also let η denote the differential operator $\eta = D^2$

The functions ψ_n happen to be eigen functions of η

i.e.
$$\eta \psi_n = \mu_n \psi_n$$
 where $\mu_n = \frac{a_n^2}{\sqrt{\lambda_n}}$ where $\lambda_n = \pi(\theta_n^2 + w_n) + \frac{\sin(2a_n\pi)}{2a_n} (\theta_n^2 - w_n^2)$

The ψ_n comprise a_n orthonormal set, i. e

$$\langle \psi_m, \psi_n \rangle = \int_{-\pi}^{\pi} \psi_m(z) \psi_n(z) dz = \begin{cases} 0 & \text{if } n \neq m \\ 1 & \text{if } n = m \end{cases}$$

also,
$$f = \sum_{n=0}^{\infty} \langle f_1, \psi_n \rangle \psi_n \dots \dots \dots$$

Where the series is understood to converge pointwise on I. The notation < f , ψ_n > denotes the inner product defined by ,

$$\langle f, \psi_n(t,z) \rangle = \int_{-\pi}^{\pi} f(z) \psi_n(t,z) dz.$$

We use this classical facts to construct a using function space β . Whose dual consists of generalized functions which can be expanded in generalized sense in to series like β consists of all function $\varphi(t, z)$ that possess the following property.

- i) $\varphi(t, z)$ is defined complex valued & smooth on I.
- ii) For each nonnegative integer k.

$$\alpha_k(\varphi) \triangleq \alpha_0(\eta^k \varphi) \triangleq \left[\int_{-\pi}^{\pi} |\eta^k \varphi(t, z)|^2 dt \, dz\right]^{\frac{1}{2}} < \infty$$

iii) For each n & k. $(\eta^k \varphi, \psi_n) = (\varphi, \eta^k \psi_n)$

Lemma I :- β is testing function space .

Proof Here $\{\alpha_k\}_{k=0}^{\infty}$ is a multinorm on β . Hence each α_k is a serinorm & in addition α_0 is norm on β . We equip β with the topology generated by $\{\alpha_k\}_{k=0}^{\infty}$ and this makes β a countably multinormed space. Under this formulation β turns out to be testing function space.

Lemma II : - Every $\psi_n(z)$ is a member of β .

Since
$$\eta^k \psi_n = \mu_n^k \psi_n$$
 we get

$$|\alpha_{k}(\psi_{n})|^{2} = \int_{-\pi}^{\pi} (\eta^{k} \psi_{n})^{2} dx = \mu_{n}^{2k} \int_{-\pi}^{\pi} \psi_{n}^{2} dx = \mu_{n}^{2k} < \infty$$

Also for $n \neq m$,

$$<\eta^k \;\psi_n$$
 , $\;\psi_m>=<\mu^k_n\;\psi_n$, $\psi_n>=<\psi_n$, $\mu^k_n\;\psi_n>=<\psi_n$, $\eta^k\;\psi_n>=$

Since μ_n are real, hence $\psi_n \in \beta \forall_n$.

The set of all continuous linear functionals on β is denoted by β' . Here member of β' are called generalized function on I.

The generalized function space η'

Since the testing function space β is complete so also β' according to (theorem 1.8.3 Zemanian 1968) We define a generalized differential operator η' on β' through the relation

$$<\mathrm{f}$$
, $\eta \varphi > = <\mathrm{f}$, $\eta \bar{\varphi} > = <\overline{\eta}' \ \mathrm{f} \ \bar{\varphi} > = <\overline{\eta}' \ \mathrm{f} \ \varphi >$

 $\overline{\eta}'$ is denoted by the differential expression obtained by reversing the order in which the differentiation and multiplication by φ occur in η . Thus $\eta = \overline{\eta}'$ is defined as generalized differential operator on β' through the equation $\langle \eta, f\varphi \rangle = \langle f | \eta\varphi \rangle f \in \beta', \varphi \in \beta$. Since η is continuous linear mapping of β in to itself. It is also continuous linear mapping of β' into '.

Some other properties of β' .

i)D(I) is obviously a sub space of β and convergence in D (I) implies convergence in β .

The restriction of any $f \in \beta'$ to D (I) is a member of D'(I) and convergence in β' implies convergence in D'(I).

ii) Since η is continuous linear mapping from β' in to β' . It follows that $\eta^k f \in \beta'$ whenever f is regular generalized function in β' .

i) Since D (I) is a subset of \in (I) and since D(I) is dense in \in (I) β is also dense in \in (I). Hence \in '(I) is subspace of β '.

The member of β' lead to gereralised Marchi Fasulo transformation M F defined by

M F f = F (n) =
$$\langle f, \psi_n \rangle$$
 f $\in \beta'$ n = 0,1,2....

Thus the continuous and linear mapping MF maps $f \in \beta'$ into a function F (n). The inverse (generalized) Marchi - Fasulo transformation MF^{-1} is defined by the series

$$f = \sum_{n=0}^{\infty} < f_1 , \psi_n > \psi_n$$

$$MF^{-1}F(n) = \sum_{n=0}^{\infty} F(n) \psi_n = \sum_{n=0}^{\infty} \langle f_1, \psi_n \rangle \psi_n = f$$

REFERENCES

[1] K.W.KHOBRAGADE An Inverse Transient Thermoelastic Problem Of A Thin Annular Disc Applied Mathematics 6(2006) 17-25

[2] S.V.MORE AND S.D.BHOSALE on Marchi zgrablich transformation of generalized function IMAJ of Applied Mathematics (1984) 33-42

[3] S. R. PATEL Inverse problems of Transient Heat conduction with Radiation , The mathematics Education (1971) vol . No. 4.

[4] A .H. ZEMANIAN Generalised Integral Transformation Interscience Pub. New York , (1968)