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Abstract.-  

 Let A be a finite dimensional algebra over an algebraically closed  field K. The 

derived Picard group DPick(A) is the group of two-sided tilting  complexes over A modulo 

isomorphism. We prove that DPick(A) is a locally  algebraic group, and its identity 

component is Out     
 . If B is a derived  Morita equivalent algebra then DPicK(A) DPicK(B) 

as locally algebraic  groups.  
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 Let A and B be associative algebras with 1 over a field K. We denote by  D
b
 (Mod 

A) the bounded derived category of left A-modules. Let B° be the op- posite algebra, so an 

A KB°-module is a K-central A-B-bimodule. A two-sided tilting complex over (A, B) is a 

complex T D
b
 (Mod A k B°) such that there exists a complex T

v
   D

b
 (Mod B A ) and 

isomorphisms of the derived tensor products T   
 V A and T

V     
 . Two-sided tilting 

complexes were introduced by Rickard in [Rd] 

 When B = A we write A
e
 := A K A  . The set  

 

DPicK(A) = 
{                                       }

           
 

 

is the derived Picard group of A (relative to K). The identity element is the class  of A, the 

multiplication is               
  , and the inverse is T T

V
= RHomA(T, A). 

 

 Denote by OutK(A) the group of outer K-algebra automorphism of A, and by  

PicK(A) the Picard group of A (the group of invertible bimodules modulo isomor- phism). 

Then there are inclusions  

 

OutK (A)   PicK(A)   DPicK(A).  
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 The first inclusion sends the automorphism   to the invertible bimodulc     where 

the right action is twisted by . The second inclusion corresponds to the full embedding Mod 

A
e
   D

b
 (Mod A

e
). See [Ye] for details.  

 To simplify notation we use the same symbol to denote an automorphism     AutK 

(A) and its class in Outk(A). Likewise for a two-sided tilting complex T and Its class in 

DPicK(A). The precise meaning is always clear from the context. Now assume K is 

algebraically closed and A is a finite dimensional K-algebra. Then the group AutK(A) = 

AutAIgK(A) of K-algebra automorphisms is a linear Algebraic group, being a closed 

subgroup of GL(A) = AutModK(A)- This induces a Structure of linear algebraic group on the 

quotient OutK(A). Denote by Out     
 the identity component.  

 Examples calculated in [MY] indicated that the whole group DPicK(A) should carry 

a geometric structure (cf. Example 3 below). This is our first main result . 

 

Theorem 2. 

 A result of Brauer says that the group Out     
  is a Morita invariant of A: if  A and 

B are Morita equivalent K-algebras then Out     
         

 . In [HS] and  [Ro] this is 

extended to derived Morita equivalence. Our Theorem 4 extends these  results further.  We 

shall need the following variant of the result of Huisgen-Zimmermann, Saorin and Rouquier.  

 

THEOREM 1. Let A and B be finite dimensional K-algebras. Suppose T   D
b
 (ModA KB ) 

is a two-sided titling complex over (A, B), with inverse T
v D

b
(ModB KA ). Then for any 

element        
  (A) the two-sided tilting complex   

                   
 

 
 (B) 

Is in     
      The group homomorphism 

 

  
      

         
     

 

is an isomorphism of algebraic groups.  

 

Proof. According to [HS, Theorem 17] or [Ro, Theoreme 4.2] there is an iso- morphism of 

algebraic groups   :     
  (A)       

 (B) induced by T. Letting  

 

  :=           
     one has 

T B                      . 

 

Applying     
  to this isomorphism we see that      

                    

 

    
                                    

    . 

 

 A locally algebraic group over K is a group G, with a normal subgroup G°, such 

that G° is a connected algebraic group over K, each coset of G° is a variety, and 

multiplication and inversion are morphisms of varieties. A morphism       of locally 

algebraic groups is a group homomorphism such that            And the restriction 

         is a morphism of varieties. We call   can open immersion if   is injective and 

   is an isomorphism. 
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 In other words G is the group of rational points G(K) of a reduced group scheme G 

locally of finite type over K, in the sense of [SGA3, Expose VIA]. A morphism       

corresponds to a morphism       of group schemes over K.  

Here is our first main result.  

 

Theorem 2. Let A be a finite dimensional K-algebra. Then the derived Picard group 

DPicK(A) is a locally algebraic group over K. The inclusion OutK(A)   DPicK(A) is an open 

immersion.  

 In particular the identity components coincide:     
    =      

    . Proof. 

Theorem 1 with A = B implies that the subgroup     
               is  normal, and for any 

two-sided tilting complex T the conjugation cf   
 :    

 (A)     
     is an automorphism 

of algebraic groups.  

 Let us now switch to the notation            
  for the operations in      (A). 

Define an algebraic variety structure on each coset C=T.     
                using the 

multiplication map             
    . Since   

  is an automor- phism of algebraic 

groups, the variety structure is independent of the representative T C.  

 Let us prove that         is a locally algebraic group. For 

          
                      , multiplication is the morphism                

            
         .  

 

Similarly for the inverse:  

 

              
       

 

Example 3. Let   
⃗⃗⃗⃗  ⃗ be the quiver with two vertices x, y and n arrows       

Let A be the path algebra K  
⃗⃗⃗⃗  ⃗ According to [MY, Theorem 5.3], OutK(A)    

PicK(A) PGLn(K) and 

 

DPicK(A) Z            . 

 

 In the semi-direct product a generator T of Z acts on a matrix 

              
             This is clearly a morphism of varieties, so          is 

indeed a locally algebraic group.  

 Our second main result relates two algebras. Recall that the algebras A and B are  

derived Morita equivalent over K if there is a K-linear equivalence of triangulated  categories 

                 . 

 

Theorem 4. Suppose A and B are two finite dimensional K-algebras, and assume they are 

derived Morita equivalent over K. Then DPicK(A) DPicK(B) as locally algebraic groups.  

 

Proof. It is known that there exist two-sided tilting complexes                choose 

one. We obtain a group isomorphism  

 

   {
                 

        
   

 . 
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By Theorem 1,    restricts to an isomorphism of algebraic groups   
      

     
    

           is an isomorphism of locally algebraic groups.  

 We end the paper with a corollary and some remarks. Suppose C is a K-linear 

triangulated category that's equivalent to a small category. Denote by     
     the group of 

K-linear triangle auto-equivalences of C modulo natural isomorphism.   

Let mod A stand for the category of finitely generated A- modules.  

 

Corollary 5. Suppose C is a K-linear triangulated category that is equivalent to    (mod a) 

for some hereditary finite dimensional K.-algebra A. Then     
   (C) is a locally algebraic 

group.  

Proof. Trivially     
          

  (         ), and by [MY, Corollary 0.11] we have 

    
                      . 

 

Example 6. Beilinson [Be] proved that D
b
 (Coh  

 )   (mod K   
⃗⃗ ⃗⃗  ), where Coh  

   is the 

category of coherent sheaves on the projective line, and   
⃗⃗ ⃗⃗   is the quiver from Example 3. 

Therefore,     
           

   is a locally algebraic group.  

This should be compared to Remark 7 below; see also [MY, Remark 5.4].  

 

Remark 7. Suppose X is a smooth projective variety over K with ample canonical or anti-

canonical bundle. Bondal and Orlov [BO] proved that  

 

    
  (        )                     

 

 Here Pic(X) is the group of line bundles. Thus,     
  (        ) G D, where G 

is an algebraic group and D is a discrete group, and in particular, this is a locally algebraic 

group.  

 

Remark 8. In [Or] , Orlov gives an example of an abelian variety over IK such that  

 

    
  (        )    (   ̂)    

 

 where D is a discrete group (an extension of SL2(Z) by Z) and  ̂ is the dual  Abelian 

variety. The group D acts (nontrivially) via AutK(X x  ̂) and hence      
  (        ) is a 

locally algebraic group.  
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