Vol 3 Issue 11 Dec 2013

ISSN No : 2230-7850

International Multidisciplinary Research Journal

Indían Streams Research Journal

Executive Editor Ashok Yakkaldevi Editor-in-Chief H.N.Jagtap

Welcome to ISRJ

RNI MAHMUL/2011/38595

University,Kolhapur

Govind P. Shinde

Indapur, Pune

ISSN No.2230-7850

Indian Streams Research Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial board. Readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

Flávio de São Pedro Filho	Mohammad Hailat	Hasan Baktir
Federal University of Rondonia, Brazil	Dept. of Mathematical Sciences,	English Languag
•	University of South Carolina Aiken	Department, Ka
Kamani Perera		
Regional Center For Strategic Studies, Sr.	i Abdullah Sabbagh	Ghayoor Abbas
Lanka	Engineering Studies, Sydney	Dept of Chemist Management Sc
Janaki Sinnasamy	Catalina Neculai	C
Librarian, University of Malaya	University of Coventry, UK	Anna Maria Cor AL. I. Cuza Uni
Romona Mihaila	Ecaterina Patrascu	
Spiru Haret University, Romania	Spiru Haret University, Bucharest	Horia Patrascu Spiru Haret Uni
Delia Serbescu	Loredana Bosca	Bucharest,Roma
Spiru Haret University, Bucharest,	Spiru Haret University, Romania	
Romania		Ilie Pintea,
	Fabricio Moraes de Almeida	Spiru Haret Uni
Anurag Misra	Federal University of Rondonia, Brazil	
DBS College, Kanpur		Xiaohua Yang
	George - Calin SERITAN	PhD, USA
Titus PopPhD, Partium Christian	Faculty of Philosophy and Socio-Political	
University, Oradea, Romania	Sciences Al. I. Cuza University, Iasi	
	Editorial Board	
Pratap Vyamktrao Naikwade	Iresh Swami	Rajendra Shenda
ASP College Devrukh, Ratnagiri, MS India	a Ex - VC. Solapur University, Solapur	Director, B.C.U. Solapur
R. R. Patil	N.S. Dhavgude	Solupui
Head Geology Department Solapur	Ex. Prin. Davanand College, Solapur	R. R. Yalikar
University, Solapur		Director Managr
	Narendra Kadu	e
Rama Bhosale	Jt. Director Higher Education, Pune	Umesh Rajderka
Prin. and Jt. Director Higher Education,		Head Humanitie
Panvel	K. M. Bhandarkar	YCMOU,Nashik
	Praful Patel College of Education, Gondia	
Salve R. N.		S. R. Pandya
Department of Sociology, Shivaji	Sonal Singh	Head Education

Sonal Singh Vikram University, Ujjain

G. P. Patankar Alka Darshan Shrivastava S. D. M. Degree College, Honavar, Karnataka Shaskiya Snatkottar Mahavidyalaya, Dhar

Maj. S. Bakhtiar Choudhary Director, Hyderabad AP India.

S.Parvathi Devi

ge and Literature iyseri

Chotana try, Lahore University of ciences[PK]

nstantinovici iversity, Romania

iversity, ania

iversity, Romania

.....More

ge .D. Solapur University,

ment Institute, Solapur

ar es & Social Science k

Head Education Dept. Mumbai University, Mumbai

Rahul Shriram Sudke Devi Ahilya Vishwavidyalaya, Indore

S.KANNAN

Awadhesh Kumar Shirotriya Secretary, Play India Play, Meerut (U.P.)

Bharati Vidyapeeth School of Distance

Education Center, Navi Mumbai

Chakane Sanjay Dnyaneshwar

Arts, Science & Commerce College,

Ph.D.-University of Allahabad

Sonal Singh, Vikram University, Ujjain Annamalai University, TN

Satish Kumar Kalhotra Maulana Azad National Urdu University

Address:-Ashok Yakkaldevi 258/34, Raviwar Peth, Solapur - 413 005 Maharashtra, India Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahoo.in Website: www.isrj.net

Indian Streams Research Journal Volume-3, Issue-11, Dec-2013 ISSN 2230-7850 Available online at www.isrj.net

STRUCTURAL AND MAGNETIC PROPERTIES OF FERRITE-FERROELECTRIC ME COMPOSITE

R. A. Kunale, R. H. Kadam, D. R. Mare, U. B. Dindore

¹Department of Physics, Shrikrishna College Gunjoti, Tq. Omerga, Dist. Osmanabad,India. ²Registrar of Dr.Babasaheb Ambedker Marathwada University Aurangabad, Aurangabad,India. ³Adarsh College Omerga, Tq.Omerga, Dist.Osmanabad,India.

Abs tract:-*The piezomagnetic-ferrite and piezoelectric-ferroelectric Magnetoelectric (ME) composites with* composition (1-x) $Ni_{0.5}Cu_{0.3}Zn_{0.2}FeQ+$ (x) BaTiO in which x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mol were prepared by conventional solid state reaction. The presence of constituent phases in the composites was confirmed by x-ray diffraction studies. The hysteresis behavior was studied to understand the magnetic properties such as saturation magnetization and magnetic moment B. The magnetic properties of above mentioned composites were investigated by using Vibrating Sample Magnetometer (VSM) at room temperature.

Keyw ords:magnetization, Composites, X-ray diffraction, ferrite, ferroelectric.

INTRODUCTION

Ferroelectric ceramics are widely used in a broad range of applications, especially in the design of electronic devices such as capacitors, dielectrics materials [1-4]. Barium titanate (BaTiQ₃) is one of the most used ferroelectric ceramic in electronics due to its high dielectric constant, which makes it a very attractive material to use in capacitors such as boundary layer capacitors (BLC) and multilayer ceramic capacitors (MLCC) [5-7]. Because of its extensive use, it has been widely studied and several methods have been proposed to enhance its dielectric constant.

Composites are class of materials in which different phases mixed together and used for various applications. Composites containing piezomagnetic (ferrite) and piezoelectric (ferroelectric) phases are known as magne toelectric (ME) composites [8]. These magnetoelectric composites have applications in radioelectronics, optoelectronics, microwave, electronics and as transducers in instrumentation [8–10]. The magnetoelectric (ME) effect is a phenomenon in which the application of magnetic field induces electric polarization. ME effect is a property of the composites which is absent in their constituents phases [8]. The ME effect is a two field coupled effect in which the application of electric field induces magnetization and magnetic field induces electric polarization. ME effect is a property of the composites which is absent in their constituents phases. The deformation of ferrite phase causes the polarization of piezoelectric particles of composite material and on the other hand the electrical polarization of piezoelectric material causes change of magnetization of ferrite phase due to mechanical coupling of the piezomagnetic (ferrite) and piezoelectric (ferroelectric) phases [11]. In the present study BaTiQ (BTO) is used as the ferroelectric phase and Ni $_{0.5}Cu_{0.3}Zn_{0.2}FeO$ as the ferrite phase. The BaTiO₃has high dielectric permittivity [12] and

the nickel ferrite shows interesting magnetic properties [13].

Experimental:

The components of present composites are BaTio3 as ferroelectric phase and Ni $_{0.5}Cu_{0.3}Mg_{0.2}FeO_4$ as a ferrite phase with general formula $(1-x)Ni_{0.5}Cu_{0.3}Mg_{0.2}FeO_{+}(x)$ BaTiO₃in which x = 0, 0.2, 0.4, 0.6, 0.8, and 1 mol wereprepared by conventional solid state reaction. The ferrite phase was prepared by NiO, CuO, MgO, and FeO in 2, 3 required molar proportions. These oxides were mixed and grind in agate mortar for couple of hours. The ferroelectric phase was prepared by using BaO and TiO as starting materials. These oxides are also mixed and grind in agate mortar. The ME composites were prepared by mixing ferrite phase with ferroelectric phase respectively with molar proportion. The required molar proportions were mixed and grind for 3 hour. The grind powder mixture was pressed into pellets using hydraulic press. The pelletized sample was final sintered at 8500 for 24 hour in programmable furnace and slow cooled to room temperature to yield the final product.

Characterization and property measurement:

The crystal structures of composites and their constituent phases were determined by XRD technique using Philips X-ray diffractometer. The XRD patterns were recorded at room temperature in the 2 theta range 100 to 800 using Cu-K radiation. The magnetic properties such as magnetization, magnetron number, coerciviety, remnance ratio etc. were studied by using vibrating sample magnetometer. All the hysteresis curves were taken at room temperature.

1

RESULT AND DISCUSSION: 1.Structural Characterization:

R. A. Kunale¹, R. H. Kadam¹, D. R. Mar²e, U. B. Dindo³e "**Structural And Magnetic Properties Of Ferrite-Ferroelectric Me Composite**" Indian Streams Research Journal Vol-3, Issue-11 (Dec 2013): Online & Print Structural And Magnetic Properties Of Ferrite-ferroelectric Me Composite

Fig.1 and Fig.2 shows the XRD pattern of composites with x=0.2 and x=0.4 respectively. The peaks are characteristics of both ferrite and ferroelectric phases. The intensity as well as number of ferroelectric peaks increases with increase in ferroelectric content in composites. It may be due to increase of molar percentage of ferroelectric. The $Ni_{0.5}Cu_{0.3}Zn_{0.2}FeO$ ferrite phase has cubic spinel structure. The ferroelectric phase has tetragonal perovskite structure. The lattice parameters a= 8.3202 A° for ferrite phase and a= 4.0042 A° , c= .4.0450 Ao for ferroelectric phase respectively.

Fig.1 XRD Patterns of (1-x) Ni_{0.5}Cu_{0.3} Zn_{0.2} FeQ+4(x) BaTiO₃for x=0

Fig.2 XRD Patterns of (1-x) Ni_{0.5}Cu_{0.3} Zn_{0.2} Fe₂O+₄(x) BaTiO₃for x=0.6

2.Magnetization:

The magnetic properties of above mentioned composites were investigated by using Vibrating Sample Magnetometer (VSM) at room temperature. The hysteresis curves were obtained by plotting graph between magnetic flux and magnetization. The loop is generated by measuring the magnetic flux of a ferromagnetic material when the magnetizing force is changed. The hysteresis loop for all the samples of composite materials under investigation exhibit typical magnetic hysteresis of magnetic materials indicating that the composites are magnetically ordered. It is seen from hysteresis loop that the loop of the composites shifts towards the field axis with decreasing ferrite content. The values of saturation magnetization, remenent magnetization and coercive field are obtained from the Hysteresis loops.

The room temperature magnetic properties of the

magnetically soft nature and suitability for device applications. As predicted, the saturated magnetization (Ms) values of the composites rely on the ferrite content. An increase in ferroelectric component corresponds to lower magnetization values. The composite with the highest ferrite content at x=0.00 exhibits the maximum value of saturated (Ms) and remnant (Mr) magnetization.

Fig.3 Hysteresis behavior of (1-x) Ni_{0.5}Cu_{0.3} Zn_{0.2} FeO⁺₄(x) BaTiO. 3

In these ME composites it is found that the remnant magnetization, saturation magnetization, spontaneous polarization and coercive field of the composite decreases in proportion to the decrease in ferrite content as shown in Fig.3. This is due to ferrites are magnetic material as the composition of magnetic material decreases the corresponding magnetic properties also decreases.

CONCLUSION:

The ME ceramic composites consisting of N_{d5}Cu_{0.3} Zn_{0.2} Fe_Q and BaTiO as composites have been prepared by conventional solid state reaction. Cubic spinel structure for ferrite phase and tetragonal perovskite structure for ferroelectric phase formation was confirmed by XRD studies. The magnetic properties of above mentioned composites were investigated by using Vibrating Sample Magnetometer (VSM) at room temperature. The hysteresis loop for all the samples of composite materials under investigation exhibit typical magnetic hysteresis of magnetic materials, indicating that the composites are magnetically ordered.

REFRENCES:

- [1]E. Pedro, Sanchez-Jamenez, L. A. Perez-Maqueda, M. J. Dianez, A. Perejon, J. M. Criado, Composite Structure, 92 (2010) 2236.
- [2]G. H. Haertling, J. Am. Ceram. Soc. 82 (1999) 797
- [3] F. T. Chen, C. W. Chu, J. He, Y. Yang, J. L. Lin, Ceram. Int. 30 (2004) 1271.
- [4]R. Z. Chen, X. H. Wen, Li Lt, Z. L. Gui, Ceram. Int. 30 (2004) 1271

composites are depicted in Fig. 4, which demonstrates the presence of an ordered magnetic structure. The low coercive forces (Hc) for the composite systems indicate its

[5]S. Guillemet, Z. Valdez - Nava, C. Tenailleau, T. Lebey, B. Durand, J. Y. Chane, Adv. Materials 20 (2008) 551. [6]C. S. His, Y. C. Chen, H. Jantunen, MJ Wu, TC Lin, Eur.

2

Structural And Magnetic Properties Of Ferrite-ferroelectric Me Composite

Ceram. Soc. 28 (2008) 2581
[7]A.F. M. dos Santos, A. K. Cheetham, W.Tian X.Q. Pan, y. Jia, N.J. Murphy, J.Lettieri, and D. G. Schlom., App. Phys. Lett. 84 (2004) 91.
[8] S.V. Suryanaraya. Bull. Mater, Sci. 17(1994)
[9] H. Schmid Bull. Mater. Sci., 17 (1994) 1411.
[10] J. Van Suchtelene, Philips Res., Rep. 27 (1972) 28
[11] S.S. Lopatin. Ferroelectrics, 162(1994)63.
[12]J. Paletto, G. Crange, R. Goutte and L. Eyraud, J. Phys. Appl. Phys. 7(1974) 78.
[13] N. Ponpandian , P. Balaya and A. Narayansamy , J. Phys.:Conden. Mater. 14(2002)3221.

Department of Physics, Shrikrishna College Gunjoti, Tq. Omerga, Dist. Osmanabad,India

3

Publish Research Article International Level Multidisciplinary Research Journal For All Subjects

Dear Sir/Mam,

We invite unpublished Research Paper, Summary of Research Project, Theses, Books and Book Review for publication, you will be pleased to know that our journals are

Associated and Indexed, India

- International Scientific Journal Consortium
- ★ OPEN J-GATE

Associated and Indexed, USA

- *Google Scholar
- ***EBSCO**
- *DOAJ
- *Index Copernicus
- **★**Publication Index
- *Academic Journal Database
- Contemporary Research Index
- *Academic Paper Databse
- ★Digital Journals Database
- *Current Index to Scholarly Journals
- ★ Elite Scientific Journal Archive
- *Directory Of Academic Resources
- *Scholar Journal Index
- **★**Recent Science Index
- Scientific Resources Database

Directory Of Research Journal Indexing

Indian Streams Research Journal 258/34 Raviwar Peth Solapur-413005, Maharashtra Contact-9595359435 E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com Website : www.isrj.net