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A B ST R A C T :  The empirical pseudopotential method was developed in the 1960’s [1-3] as a way to solve 
Schrodinger’s equation for bulk crystals without knowing exactly the potential experienced by an electron in the 
lattice.  Since electrons are interacting with the crystal lattice, an electronic band structure calculation is a many 
body problem (unlike the situation in photonic crystal calculations, for example [4]). Although other methods 
existed at the time for approximating electronic band structures, the pseudopotential method gives surprisingly 
accurate results considering the computing time and effort involved.  
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 INTRODUCTION:   

The basic scheme is to assume that the core electrons are tightly bound to their nuclei, and the valence and 
conduction band electrons are influenced only by the remaining potential.  Since the potential can be Fourier 
expanded in plane waves, an eigenvalue equation for determining an E-k relationship can be established.  Although 
the Fourier coefficients for the potentials are not known, they can be empirically determined for a given crystal by 
fitting calculated crystal parameters to known measurements.  Cohen and Bergstresser followed these steps to 
determine band structures of several diamond and III-V zincblende structures [5].  
In this term paper, I repeat the original steps taken by Cohen and Bergstresser in formulating the pseudopotential 
method, then carry out calculations using a computer program I wrote to construct the electronic band diagrams of 
Si and GaAs using their form factors.  Then, I apply the method to AlAs, for which form factors are essentially 
unavailable, and construct a plausible E-k diagram for the compound using known parameters.  Limitations on the 
method used are discussed, as well as more powerful methods of determining accurate band structures. 

In physics, a pseudo potential or effective potential is used as an approximation for the simplified 
description of complex systems. Applications include atomic physics andneutron scattering. 

 

 

 
 
Comparison of a wavefunction in the Coulomb potential of the nucleus 
(blue) to the one in the pseudopotential (red). The real and the pseudo 
wavefunction and potentials match above a certain cutoff radius  . 
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ATOMIC PHYSICS  

The pseudopotential is an attempt to replace the complicated effects of the motion of the core (i.e. non-
valence) electrons of an atom and its nucleus with an effective potential, or pseudopotential, so that the Schrödinger 
equation contains a modified effective potential term instead of the Coulombic potential term for core electrons 
normally found in the Schrödinger equation. The pseudopotential approximation was first introduced by Hans 
Hellmann in the 1934.[1] By construction of this pseudopotential, the valence wavefunctiongenerated is also 
guaranteed to be orthogonal to all the core states. 

The pseudopotential is an effective potential constructed to replace the atomic all-electron potential (Full-
potential) such that core states are eliminated and the valence electrons are described by nodeless pseudo-
wavefunctions. In this approach only the chemically active valence electrons are dealt with explicitly, while the core 
electrons are 'frozen', being considered together with the nuclei as rigid non-polarizable ion cores. Norm-conserving 
pseudopotentials are derived from an atomic reference state, requiring that the pseudo- and all-electron valence 
eigenstates have the same energies and amplitude (and thus density) outside a chosen core cutoff radius . 
Pseudopotentials with larger cutoff radius are said to be softer, that is more rapidly convergent, but at the same time 
less transferable, that is less accurate to reproduce realistic features in different environments. 

 
MOTIVATION: 

1. Reduction of basis set size 
2. Reduction of number of electrons 
3. Inclusion of relativistic and other effects 

 
APPROXIMATIONS: 

1. One-electron picture. 
2. The small-core approximation assumes that there is no significant overlap between core and valence wave-function. 

Nonlinear core corrections or "semicore" electron inclusion deal with situations where overlap is non-negligible. 
Norm-conserving pseudopotentials enforce the condition that, outside of a cutoff radius, the norm of each pseudo-
wavefunction be identical to its corresponding all-electron wavefunction. Ultrasoft pseudopotentials relax the norm-
conserving constraint to reduce the basis-set size further. Another related technique is the projector augmented wave 
(PAW) method. 

Early applications of pseudopotentials to atoms and solids based on attempts to fit atomic spectra achieved 
only limited success. Solid-state pseudopotentials achieved their present popularity largely because of the successful 
fits by Walter Harrison to the nearly free electron Fermi surface of Aluminum (1958) and by James C. Phillips to the 
covalent energy gaps of Silicon and Germanium (1958). Phillips and coworkers (notably Marvin L. Cohen and 
coworkers) later extended this work to many other semiconductors, in what they called "semiempirical 
pseudopotentials". The very high accuracy of these "semiempirical pseudopotentials" in fitting optical and 
photoemission spectra of many semiconductors has never been equaled, not even by the most elaborate "first 
principles" calculations; this very high accuracy of simple single-electron models remains a puzzle today.  
 

FERMI PSEUDOPOTENTIAL 
Enrico Fermi introduced a pseudopotential, , to describe the scattering of a free neutron by a 

nucleus.[7] The scattering is assumed to be s-wave scattering, and therefore spherically symmetric. Therefore, the 
potential is given as a function of radius, : 

 

, 

where  is the Planck constant divided by ,  is the mass,  is the Dirac delta function,  is the 
neutron scattering length, and  the center of mass of the nucleus.[8] The Fourier transform of this -function 
leads to the constant neutron form factor. 
 
PHILLIPS PSEUDOPOTENTIAL 

James C Phillips developed a simplified pseudopotential while at Bell Labs useful for describing silicon 
and germanium. 
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BASIC PSEUDO POTENTIAL THEORY 

Consider a single isolated atom, with atomic number . There are  ( ) electrons, moving in an 
external potential given by 
 

 

(1.138) 

 
 

Applying Kohn-Sham DFT to this system will result in a set of  Kohn-Sham orbitals, , a 

corresponding density, , and a Kohn-Sham potential, . 
In order to create a pseudopotential for this atom, we must first specify which orbitals are to be considered core, and 

which are to be considered valence, and also specify the cut-off radius, . In most cases, all the electrons that are 
in ``closed shells'' are considered core, while the remainder are considered valence. In general, the 

pseudopotential  is non-local, in that there is a separate local potential, , acting on each angular 

momentum component, , of a given orbital. 

If we apply Kohn-Sham DFT to the atom, with the external potential, , now replaced with the 

pseudopotential, , and with only valence electrons present, the resulting pseudo-orbitals, , must 
satisfy the following requirements: 

1. Each pseudo-orbital, , must equal the corresponding orbital from the all-electron 

calculation, , for all points  that lie outside the cut-off radius. 
2. The eigenvalue of each pseudo-orbital must equal the eigenvalue of the corresponding all-electron orbital. 

3. The first and second derivatives of each  must equal those of the corresponding  at the cut-
off radius. 

4. There must be no radial nodes of the pseudo-orbitals inside the cut-off radius. 
 

Implicit in above is the requirement that the total electronic charge of the valence electrons inside the cut-
off radius is equal for both the pseudo- and all-electron orbitals. This is because in standard Kohn-Sham theory, each 

orbital is normalised to . Pseudopotentials in which this condition is respected are referred to as norm-
conserving pseudopotentials. A class of pseudopotentials, called ultrasoft pseudopotentials, also exist in which this 
condition is relaxed, allowing a lower plane wave cut-off energy, but such potentials will not be used in this work. 
Now, any pseudopotential can be chosen so long as it satisfies the above conditions, and the particular form is 
usually chosen so as to make the pseudo-orbitals as smooth as possible to minimise the required plane wave cut-off 
energy. In the basic non-local form described above, in which there is a separate local potential for each angular 
momentum component, the pseudopotential acts on an orbital as follows: 
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(1.139) 

 
 

where the  are spherical harmonics. When implemented within a plane wave basis, applying such a 

pseudopotential would require a double-loop over -vectors of the general form 
 

 

(1.140) 

 
 
which would lead to unfavourable scaling with system size. This problem can be overcome by using Kleinman-
Bylander pseudopotentials [37], in which each angular component of the pseudopotential is separated into a local 
and a non-local component as follows: 
 

 

(1.141) 

 
 

The non-local component, , is then approximated as 
 

 

(1.142) 

 
 

where the  are the pseudo-orbitals for the atomic system. Constructing the pseudopotentials in this way 
reduces the computational costs so this part of the calculation scales linearly with the number of plane waves. 
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