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INTRODUCTION: 

Due to their near Shannon-capacity [1] performance, turbo codes have received a considerable amount of 
attention since their introduction [2]. They are particularly attractive for cellular communication systems 
and have been included in the specifications for both the WCDMA (UMTS) and CDMA2000 third-
generation cellular standards. At this time, the reasons for the superior performance of turbo codes [3,4] and 
the associated decoding algorithm [5,6] are, for the most part, understood.
          The purpose of this paper is to explain the phenomenal performance of turbo codes and to  derive the 
decoding algorithm. Also the purpose is to clearly explain an efficient decoding algorithm suitable for 
immediate implementation in a software radio receiver. In order to provide a concrete example, the 
discussion is limited to the turbo code used by the Universal Mobile Telecommunications System (UMTS) 
specification, as standardized by the Third-Generation Partnership Project (3GPP) [7]. The decoding 
algorithm is based on the log-MAP algorithm [8], although many parts of the algorithm have been 
simplified without any loss in performance.
          Some critical implementation issues are discussed, in particular the decoding iterations.  Simple, but 
effective, solutions for MAP Algorithm are proposed and illustrated through computer simulations. In the 
description of the algorithm, we have assumed that the reader has a working knowledge of the Viterbi 
algorithm [9]. Information on the Viterbi algorithm can be found in a tutorial paper by Forney [10].

2) The UMTS Turbo Encoder and Decoder:

As shown in Fig. 1, the UMTS turbo encoder is composed of two constraint length 4 recursive systematic 
convolutional (RSC) encoders concatenated in parallel [12]. The feedforward generator is 15 and the 
feedback generator is 13, both in octal. The number of data bits at the input of the turbo encoder is K. Data is 
encoded by the first (i.e., upper) encoder in its natural order and by the second (i.e., lower) encoder after 
being interleaved. At first, the two switches are in the up position. The interleaver is a matrix with 5, 10, or 
20 rows and between 8 and 256 columns (inclusive), depending on the size of the input word. Data is read 
into the interleaver in a rowwise fashion (with the first data bit placed in the upper-left position of the 
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matrix). Intrarow permutations are performed on each row of the matrix in accordance with a rather 
complicated algorithm, which is fully described in the specification [11].

The data bits are transmitted together with the parity bits generated by the two encoders (the systematic 
output of the lower encoder is not used and thus not shown in the diagram). Thus, the overall code rate of the 
encoder is rate 1/3, not including the tail bits. Zk is the parity output from the upper (uninterleaved) encoder, 
and Z'k is the parity output from the lower (interleaved) encoder. After the K data bits have been encoded, 
the trellises of both encoders are forced back to the all-zeros state by the proper selection of tail bits. Unlike 
conventional convolutional codes, which can always be terminated with a tail of zeros, the tail bits of an 
RSC will de- pend on the state of the encoder. Because the states of the two RSC encoders will usually be 
different after the data has been encoded, the tails for each encoder must be separately calculated and 
transmitted. The tail bits are generated for each encoder by throwing the two switches into the down 
position, thus causing the inputs to the two encoders to be indicated by the dotted lines.

Decoder: For each time tick k, decoding is done by calculating the L-values of a +1 bit. If it is 
positive, the decision is in favor of a +1. Calculation of the L-values or L(uk) is quite a complex process. 
The main equation used to calculate the L-value is this.

          From this computation if L(uk) is positive, then uk is equal to +1. The first term, is the a-priori value 
from Decoder 2. This is the L-value of the a-priori probability of the bit in question. At first, the decoder has 
no idea what it is. A good guess is to assume it is 0.5. The second term, is computed by multiplying the 
systematic information with Lc. This value is the channel L-value and gives an indication of channel SNR. 
The third big term with all kinds of squiggly items is the a-posteriori probability. 
           This number is calculated for each trellis segment. Remember that we can only have one result for a 
trellis section, a +1 or -1. The L(uk) calculation tells us what that number is, The big equation can be written 
simply as sum of three pieces of information. L-apriori – This is our initial guess about a +1 bit in first 
iteration L-Channel - This is related to channel SNR and systematic bit and is equal to Le – the computed 
information in each iteration is called the a-posteriori L-value. The L-channel value does not change from 
iteration to iteration since is it given by . Neither the Lc nor the systematic bit changes from iteration to 
iteration, So lets called it K. The only two items that change are the a-priori and a-posteriori L-values. A-
priori value goes in, it is used to compute the new a-posteriori probability and then it can be used to compute 
L(uk) or is passed to the next decoder. Although in the example we compute L(uk) each time, during actual 
decoding this is not done. Only a-posteriori metric is computed and decoders and keep doing this either a 
fixed number of times or until it converges. L-posteriori is also called Extrinsic information. 
             A branch metric is the correlation of the received signal with its trellis values. In a nutshell, if the 
received values are the same sign as the coded bits, then the correlation will be high. For each decoder, there 
are full transition branch metrics which incorporate, the systematic and the parity bits and partial branch 
metrics which incorporate only the parity bits.
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1. Computing full branch metrics:
 The full branch metric is given by the equation

2. Compute partial branch metrics: 
These values are based only on parity bits. We will use these to compute the total extrinsic L-values. The 
equation for calculating the partial metrics is given by:

3. Calculation of forward metrics Encoding always starts in state 1. So we assume that signal can only be in 
state 1 at time k =0. The initial value of the forward metric is set at 1.0. The other three states are given value 
of 0.0. Meaning, these are not possible states. Thereafter the forward metrics are computed recursively for 
each state (not branches). The equation is:

4. Computing backward state metrics:

We assume that the signal will end in state 1. (Tail bits are added to force it end in state 1.) The ending state is 
always s1, so it gets a value of 1.0 just as the forward state metric. The rest of the three states at k = 7 are 
given a backward state value of zero. 
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5. Computing Extrinsic L-values: Now we will compute the Extrinsic L-value. Which are given by the 
product of the all three metrics.

To compute the L-value we need the ratio of these numbers for the +1 and -1 branches. For that we add the 
top four branch metrics and divide by the sum of the bottom four branch metrics to satisfy the following 
equation:

Take the natural log of the ratio. This is the extrinsic value output for this iteration. These values after 
interleaving go to Decoder 2 and become it's a-priori probabilities. Normally the decoder at this point 
would stop because it has done its job of computing the extrinsic value. But we will compute the L-value of 
the bit to show you how the bit decisions can be made at any iteration.

3) SIMULATION RESULTS

The BER performance of the Simplified-Log-MAP algorithm is compared to that of the MAP, Log-MAP, 
and Max- Log-MAP algorithms. The simulation results are for a Turbo code with 1/2 code rate, N = 1024, m 
= 3, and the feedback and feedforward generator polynomials equal to I 5oct and I 7oct respectively. Three 
iterations were used for the simulations. As we can see from the results, the Log-MAP decoding algorithm 
has similar performance to the MAP algorithm. The performance loss for the MAX-Log-MAP compared to 
the MAP algorithm is from 0.2 dB. The SNR requirement for a given BER is higher at larger constellation 
sizes, therefore, the approximation of the logarithm has more significant effect on the BER performance of 
the MAX-Log-MAP algorithm. 

The Simplified Log-MAP has a negligible performance  degradation compared to the MAP algorithm for 
QPSK constellation, while the performance loss is approximately 0.1 dB. It can be concluded from the 
above results that Simplified Log-MAP algorithm together with the new hardware implementation are an  
appropriate choices for implementing Turbo decoders in practice without any significant loss
in performance. 
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